

650V

Frame 1, 2 \& 3

HA467649U003 Issue 1
Product Manual
aerospace
climate control
electromechanical
filtration
fluid \& gas handling
hydraulics
pneumatics
process control
sealing \& shielding

650V AC Drive
 Frame 1, 2 \& 3

Product Manual
HA467649U003 Issue 1

Compatible with Version 5.x Software onwards

2011 Parker SSD Drives, a division of Parker Hannifin Ltd.
All rights strictly reserved. No part of this document may be stored in a retrieval system, or transmitted in any form or by any means to persons not employed by a Parker SSD Drives company without written permission from Parker SSD Drives, a division of Parker Hannifin Ltd. Although every effort has been taken to ensure the accuracy of this document it may be necessary, without notice, to make amendments or correct omissions. Parker SSD Drives cannot accept responsibility for damage, injury, or expenses resulting therefrom.

WARRANTY

Parker SSD Drives warrants the goods against defects in design, materials and workmanship for the period of 24 months from the date of manufacture, or 12 months from the date of delivery (whichever is the longer period), on the terms detailed in Parker SSD Drives Standard Conditions of Sale IA500504.

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin
Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Safety Information

Requirements

IMPORTANT: Please read this information BEFORE installing the equipment.

Intended Users

This manual is to be made available to all persons who are required to install, configure or service equipment described herein, or any other associated operation.
The information given is intended to highlight safety issues, EMC considerations, and to enable the user to obtain maximum benefit from the equipment.

Complete the following table for future reference detailing how the unit is to be installed and used.

INSTALLATION DETAILS				
Model Number (see product label)				
Where installed (for your own information)				
Unit used as a: (refer to Certification for the Inverter)	O Component	O Relevant Apparatus \quad	Unit fitted:	O Wall-mounted
:---	:---	\quad O Enclosure		
:---				

Application Area

The equipment described is intended for industrial motor speed control utilising DC motors, AC induction or AC synchronous machines

Personnel

Installation, operation and maintenance of the equipment should be carried out by qualified personnel. A qualified person is someone who is technically competent and familiar with all safety information and established safety practices; with the installation process, operation and maintenance of this equipment; and with all the hazards involved.

Product Warnings

	Caution isk of electric shock	Caution Refer to documentation		Earth/Ground Protective Conductor Terminal

Safety Information

Hazards

DANGER! - Ignoring the following may result in injury

1. This equipment can endanger life by exposure to rotating machinery and high voltages.
2. The equipment must be permanently earthed due to the high earth leakage current, and the drive motor must be connected to an appropriate safety earth.
3. Ensure all incoming supplies are isolated before working on the equipment. Be aware that there may be more than one supply connection to the drive.
4. There may still be dangerous voltages present at power terminals (motor output, supply input phases, DC bus and the brake, where fitted) when the motor is at standstill or is stopped.
5. For measurements use only a meter to IEC 61010 (CAT III or higher). Always begin using the highest range.
CAT I and CAT II meters must not be used on this product.
6. Allow at least 5 minutes for the drive's capacitors to discharge to safe voltage levels ($<50 \mathrm{~V}$). Use the specified meter capable of measuring up to 1000 V dc $\&$ ac rms to confirm that less than 50 V is present between all power terminals and earth.
7. Unless otherwise stated, this product must NOT be dismantled. In the event of a fault the drive must be returned. Refer to "Routine Maintenance and Repair".

WARNING! - Ignoring the following may result in injury or damage to equipment

SAFETY

Where there is conflict between EMC and Safety requirements, personnel safety shall always take precedence.

- Never perform high voltage resistance checks on the wiring without first disconnecting the drive from the circuit being tested.
- Whilst ensuring ventilation is sufficient, provide guarding and /or additional safety systems to prevent injury or damage to equipment.
- When replacing a drive in an application and before returning to use, it is essential that all user defined parameters for the product's operation are correctly installed.
- All control and signal terminals are SELV, i.e. protected by double insulation. Ensure all external wiring is rated for the highest system voltage.
- Thermal sensors contained within the motor must have at least basic insulation.
- All exposed metalwork in the Inverter is protected by basic insulation and bonded to a safety earth.
- RCDs are not recommended for use with this product but, where their use is mandatory, only Type B RCDs should be used.

EMC

- In a domestic environment this product may cause radio interference in which case supplementary mitigation measures may be required.
- This equipment contains electrostatic discharge (ESD) sensitive parts. Observe static control precautions when handling, installing and servicing this product.
- This is a product of the restricted sales distribution class according to IEC 61800-3. It is designated as "professional equipment" as defined in EN61000-3-2. Permission of the supply authority shall be obtained before connection to the low voltage supply.

CAUTION:

APPLICATION RISK

- The specifications, processes and circuitry described herein are for guidance only and may need to be adapted to the user’s specific application. We can not guarantee the suitability of the equipment described in this Manual for individual applications.

RISK ASSESSMENT

Under fault conditions, power loss or unintended operating conditions, the drive may not operate as intended. In particular:

- Stored energy might not discharge to safe levels as quickly as suggested, and can still be present even though the drive appears to be switched off
- The motor's direction of rotation might not be controlled
- The motor speed might not be controlled
- The motor might be energised

A drive is a component within a drive system that may influence its operation or effects under a fault condition. Consideration must be given to:

- Stored energy
- Supply disconnects
- Sequencing logic
- Unintended operation

Contents

Contents Page
Chapter 1 GEIINgStaried 1-1
Introduction 1-1
Equipment Inspection 1-1
Storage and Packaging 1-1
About this Manual 1-1
Chapter 2 An Overviw of the Drive 2-1
Component Identification 2-1
Chapter 3 Instailing the Drive 3-1
Mechanical Installation 3-1
Mounting the Drive 3-1
Ventilation 3-1
Electrical Installation 3-2
Wiring Instructions 3-2
Connection Diagram 3-3
Optional Equipment 3-6
Chapter 4 Operating the Drive 4-1
Pre-Operation Checks 4-1
Initial Start-up Routines 4-1
Local Control Operation 4-2
Remote Control Operation 4-2
Set-up as an Open-loop drive (V/F Mode) 4-3
Set-up using the Sensorless Vector Mode 4-3
Tuning the Drive to Your System 4-5
Chapter 5 THE KYpad 5-1
Controlling the Drive using the Keypad 5-1
Control Key Definitions 5-1
Display Indications 5-2
Drive Status Indications. 5-2
Quick Application Selection 5-2
Selecting the Menu Detail 5-3
The DIAGNOSTICS Menu 5-3
The Menu System 5-4
Special Menu Features 5-5
How To Change a Parameter Value 5-5
Resetting to Factory Defaults (2-button reset) 5-5
Changing the Default Operating Frequency 5-5
Selecting Local or Remote Control. 5-6

Contents

Contents Page
Changing Direction in Local Control 5-6
Password Protection 5-7
Chapter 6 Programming Your Appication 6-1
MMI Parameters 6-1
Product-Related Default Values 6-16
Chapter 7 TRIPS AND FAULT FINDING 7-1
Trips 7-1
Trip Warning Message 7-1
What Happens when a Trip Occurs 7-1
Resetting a Trip Condition 7-1
Using the Keypad to Manage Trips 7-1
Hexadecimal Representation of Trips 7-5
Fault Finding 7-6
Chapter 8 ROUIINE MAINIENANGE \& REPAR 8-1
Routine Maintenance 8-1
Repair 8-1
Saving Your Application Data 8-1
Returning the Unit to Parker SSD Drives 8-1
Disposal 8-1
CHAPTER 9 TECHNICALSPECIFICAIIONS 9-1
Understanding the Product Code 9-1
Environmental Details. 9-3
Power Details 9-3
Electrical Ratings 9-4
Supply Short Circuit Rating 9-5
User Relay 9-5
Analog Inputs/Outputs 9-5
Analog Outputs 9-5
Digital Inputs 9-6
Digital Outputs 9-6
Cabling Requirements for EMC Compliance 9-6
Internal Dynamic Braking Circuit 9-7
External Brake Resistor 9-7
Supply Harmonic Analysis (230V filtered) 9-8
Supply Harmonic Analysis (400V filtered) 9-9
Supply Harmonic Analysis (230V unfiltered) 9-10
Supply Harmonic Analysis (400V unfiltered) 9-11
CHAPTER 10 CERIIFICAIION FOR THE DRVE 10-1
Requirements for EMC Compliance 10-1
Earthing Requirements 10-1
Requirements for UL Compliance 10-1

Contents

Contents Page
European Directives and the CE Mark 10-3
CE Marking for Low Voltage Directive 10-3
CE Marking for EMC - Who is Responsible? 10-3
EMC Compliance 10-3
Certificates. 10-4
Chapter 10 Cerilifation forthe Drive 10-1
Requirements for EMC Compliance 10-1
Earthing Requirements 10-1
Requirements for UL Compliance 10-1
European Directives and the CE Mark 10-3
CE Marking for Low Voltage Directive 10-3
CE Marking for EMC - Who is Responsible? 10-3
EMC Compliance 10-3
Certificates. 10-4
Chapter 11 Serial commundcations 11-1
Connection to the P3 Port 11-1
CHAPTER 12 Applacailions 12-1
The Default Application 12-1
How to Load an Application 12-1
Application Description 12-1
Control Wiring for Applications 12-1
Application 1 : Basic Speed Control (default) 12-2
Application 2 : Auto/Manual Control 12-4
Application 3 : Preset Speeds 12-6
Application 4 : Raise/Lower Trim. 12-8
Application 5 : PID 12-10
Application 6 : Auxilliary Comms 12-12

Contents

Chapter 1 GETIING STARTED

Introduction

The 650V Series AC Drive provides simple, compact, and low-cost speed control for 3-phase induction motors

This manual describes the low-power end of the 650 V product range for the following motor power ratings:

	Nominal Input Voltage	Phase	Drive Power	
Frame 1	230 V	1	$0.25-0.75 \mathrm{~kW}$	$0.3-1.0 \mathrm{Hp}$
Frame 2	230 V	1	$1.1-1.5 \mathrm{~kW}$	$1.5-2.0 \mathrm{Hp}$
Frame 2	400 V	3	$0.37-2.2 \mathrm{~kW}$	$0.5-3.0 \mathrm{Hp}$
Frame 3	230 V	1	2.2 kW	3.0 Hp
Frame 3	230 V	3	$2.2-4.0 \mathrm{~kW}$	$3.0-5.0 \mathrm{Hp}$
Frame 3	400 V	3	$3.0-7.5 \mathrm{~kW}$	$4.0-10.0 \mathrm{Hp}$

The drive features:

- Local or Remote mode operation
- SELV control terminals (Safe Extra Low Volts)
- Intelligent monitoring strategy to avoid nuisance tripping
- In-built protection of the unit against overloads, excessive voltages, phase-to-phase and phase-to-earth short circuits
- An internal RFI filter is fitted as standard
- An internal dynamic brake switch for connection to an external resistor (Frame 3: 230V, and 400 V units only)
- Quiet operation
- Controlling the unit locally using the 6511 Keypad gives access to parameters, diagnostic messages, trip settings and full application programming. Other features also become available, such as the advanced sensorless vector control scheme which gives high torque, low speed operation; selectable switching frequencies; and a unique Quiet Pattern control system that minimises audible noise from the motor.
Note: Do not attempt to control motors whose rated current is less than 50\% of the drive rated current. Poor motor control or Autotune problems may occur if you do

Equipment Inspection

- Check for signs of transit damage
- Check the drive is suitable for your requirements by reading the Product Code on the rating label. Refer to Chapter 9: "Technical Specifications" - Understanding the Product Code.
If the unit is damaged, refer to Chapter 8: "Routine Maintenance and Repair" for information on returning damaged goods.

Storage and Packaging

Save the packaging in case of return. Improper packaging can result in transit damage.
If the unit is not being installed immediately, store the unit in a well-ventilated place away from high temperatures, humidity, dust or metal particles.

About this Manual

This manual is intended for use by the installer, user and programmer of the drive. It assumes a reasonable level of understanding in these three disciplines.

Note: Please read all Safety Information before proceeding with the installation and operation of this unit.

It is important that you pass the manual on to any new user of this unit.

Software Product Manual

An accompanying Software Product Manual is available for download from the Parker SSD Drives website: www.SSDdrives.com.

1-2 Getting Started

Chapter 2 AN OVERVIEW OF THE DRIVE

Component Identification

Figure 2-1 View of Component Parts (Frame 1 illustrated)

$\mathbf{1}$	Main drive assembly	$\mathbf{7}$	Control terminals
$\mathbf{2}$	Keypad	$\mathbf{8}$	Volt-free relay contacts
$\mathbf{3}$	DIN clip/fixing bracket	$\mathbf{9}$	Product rating label
$\mathbf{4}$	Terminal cover	$\mathbf{1 0}$	Motor thermistor terminals
$\mathbf{5}$	Power terminals	$\mathbf{1 1}$	RS232 programming port - P3
$\mathbf{6}$	Motor cable screen clamp	$\mathbf{1 2}$	Encoder/digital inputs

2-2 An Overview of the Drive

Chapter 3 INSTALLING THE DRIVE

IMPORTANT: Read Chapter 10: "Certification for the Drive" before installing this unit.

Mechanical Installation

The DIN clip is repositioned on Frames 1 and 2 to provide the upper fixing hole when wall-mounting

SIDE VIEW - Frame 1 illustrated

REAR VIEW - Frame 1 illustrated (Frame 2 similar)

	Fixing	Torque	Weight	H1 Fixing Centres	H2	H3	H4	C	W	D
Frame 1	M4	1.5 Nm	0.85 kg	132	143	35	139	6	73	142
			$(2 \mathrm{lbs})$	$\left(5.2^{\prime \prime}\right)$	$\left(5.6^{\prime \prime}\right)$	$\left(1.4^{\prime \prime}\right)$	$\left(5.5^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(2.9^{\prime \prime}\right)$	$\left(5.6^{\prime \prime}\right)$
Frame 2	M5	3.0 Nm	1.4 kg	188	201	35	194	6.5	73	173
			$(3 \mathrm{lbs})$	$\left(7.4^{\prime \prime}\right)$	$\left(7.9^{\prime \prime}\right)$	$\left(1.4^{\prime \prime}\right)$	$\left(7.7^{\prime \prime}\right)$	$\left(0.24^{\prime \prime}\right)$	$\left(2.9^{\prime \prime}\right)$	$\left(6.8^{\prime \prime}\right)$
Frame 3	M5	3.0 Nm	2.7 kg	242	260	38	112	5	96	200
			$(6 \mathrm{lbs})$	$\left(9.5^{\prime \prime}\right)$	$\left(10.2^{\prime \prime}\right)$	$\left(1.5^{\prime \prime}\right)$	$\left(4.4^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(3.8^{\prime \prime}\right)$	$\left(7.9^{\prime \prime}\right)$

Dimensions are in millimetres (inches)

Mounting the Drive

To maintain compliance with European Electrical Safety Standard VDE0160(1994)/EN50178 (1998) the unit must be mounted inside a control cubicle that requires a tool for opening. The cubicle should provide 15 dB attenuation to radiated emissions between $30-100 \mathrm{MHz}$.
Mount the drive vertically on a solid, flat, non-flammable, vertical surface. It can be panel-mounted, or rail-mounted on a rail complying with EN50022 (35mm DIN).

To DIN mount the unit, hang the unit on the top DIN rail and push the unit onto the bottom DIN rail until it snaps in to position. Secure with a lower screw fixing. To release the unit, use a flat bladed screwdriver as shown.

Ventilation

Maintain a minimum air clearance for ventilation of 100 mm (4 inches) above and below the unit. When mounting two or more 650V units together, these clearances are additive. Ensure that the mounting surface is normally cool. Be aware that adjacent equipment may generate heat and also have clearance requirements. Provided the minimum clearance for ventilation is maintained, 650 V drives may be mounted side-by-side.

IMPORTANT: Read the Safety Information on page Cont. 2 before proceeding.

Wiring Instructions
 Local Control Wiring

This is the simplest installation. Every new drive will operate in Local Control when first powered-up. The keypad is used to start and stop the drive.

Refer to the Connection Diagram and install the:

- Thermistor cable, or link/jumper terminals TH1A and TH1B (we recommend you do use a thermistor)
- Motor cable
- Supply cable
- Follow the earthing/grounding and screening advice Refer to Chapter 4: "Operating the Drive"- Local Control Operation.

To motor thermistor or link terminals TH1A and TH1B

Remote Control Wiring

If operating in Remote Control you will use your control panel to start and stop the drive, via a speed potentiometer and switches or push-buttons.

Your wiring of the control terminals will be governed by the Application you use: refer to Chapter 12 for an explanation of the various Applications you can select and the appropriate control wiring. Application 1 is the default Application.

The diagram below shows the minimum connections to operate the drive for single-wire (switch) starting, and push-button starting. Other control connections for your Application are shown in Chapter 12 and can be made to suit your system.
Referring to the Connection Diagram:

- Follow the instructions for Local Control Wiring, as detailed above
- Install using minimum connections (suitable for Application 1 only), or refer to Chapter 12 and install the appropriate control wiring for your system

Minimum Connections for Application 1: Single Wire Starting Push-Button Starting

Note: You can still operate the drive in Local mode, if necessary, with any Application selected.
Refer to Chapter 4: "Operating the Drive" and follow the relevant instructions for Single Wire Starting or Push-Button Starting.

WARNING!

This product is designated as "professional equipment" as defined in EN61000-3-2. Where enforced, permission of the supply authority shall be obtained before connection to the low voltage domestic supply. Ensure that all wiring is electrically isolated and cannot be made "live" unintentionally by other personnel.
The drive is suitable for use with both earth referenced supplies (TN) and nonearth referenced supplies (IT) when fitted with an internal ac supply EMC filter.

Connection Diagram

Wiring Instructions

1 Remove the terminal cover from the drive.
2 Loosen the motor cable screen clamp.
3 Connect the power supply cable, motor cable and control cables (if required).
4 Fasten the motor cable in place with the motor cable screen clamp.
Secure any control cable screen connections under the right hand screw.
Frames 2 \& 3 only : Secure control cables under the wire retainers.
5 Connect the thermistor and user-relay if required.
Frames 2 \& 3 only: connect the dynamic brake if required (400V units only).
6 Use a cable tie and secure all the control cables and user-relay cables (if fitted) as close to the control terminals as possible.
7 Connect the ancillary equipment as shown, for example, an external brake resistor.
8 Re -fit the terminal cover.

The drive is suitable for use with earth referenced supplies (TN) and non-earth referenced supplies (IT) when fitted with an internal ac supply EMC filter.

IMPORTANT:

Note that the 650 V unit must bepermanently earthed using two independent protective earth/ground incoming supply conductors.

Control Wiring Connections

Terminal (SELV)	Name	Application 1 Default Function (for other Applications refer to Chapter 12: "Applications")	Range
P3	P3	RS232 port for use with remote-mounted RS232 keypad or programming PC	-
RLIA	User Relay	Volt-free contact	0-250Vac/24Vdc 4A
RL1B	User Relay	Volt-free contact	$0-250 \mathrm{Vac} / 24 \mathrm{Vdc} 4 \mathrm{~A}$
13	DIN7 (ENC B)	Configurable digital input	0-24V
12	DIN6 (ENC A)	Configurable digital input	0-24V
11	DIN5	Not Coast Stop - configurable digital input: $0 \mathrm{~V}=$ Stop, $24 \mathrm{~V}=$ Coast Stop	0-24V
10	$\begin{aligned} & \text { DIN4/ } \\ & \text { DOUT2 } \end{aligned}$	Configurable digital input/output Not Stop (input): $0 \mathrm{~V}=\mathrm{No}$ latching of Run (DIN1), $24 \mathrm{~V}=$ Run latched	$0-24 \mathrm{~V}$ source open collector *
9	DIN3	Jog - configurable digital input: $0 \mathrm{~V}=\text { Stop, } 24 \mathrm{~V}=\mathrm{Jog}$	0-24V
8	DIN2	Direction - configurable digital input: OV = Forward, $24 \mathrm{~V}=$ Reverse	0-24V
7	DIN1	Run Forward - configurable digital input: $0 \mathrm{~V}=$ Stop, $24 \mathrm{~V}=$ Run	0-24V
6	+24V	24V supply for digital I/O	*
5	AOUT1	Ramp Output - configurable analog output (10mA loading)	0-10V
4	AOUT2	Defaults to provide a 10 V reference (10 mA loading)	0-10V
3	AIN2	Speed Trim - analog input 2	0-10V, 4-20mA
2	AIN1	Speed Setpoint - analog input 1. If AIN 1 is not used, connect to 0 V .	0-10V
1	OV	OV reference for analog/digital I/O	OV

* The total current available is 50 mA , either individually or as the sum of outputs from terminals 6, 10 and 11 .

Power Wiring Connections

Terminal	Description	Function	Range	
			200V 1-Phase	200V/400V 3-Phase
TH1A	Thermistor	Connection to motor thermistor	It is good practice to protect motors by fitting temperature sensitive resistors. A typical resistance (up to a reference temperature of $125^{\circ} \mathrm{C}$) is 200Ω, rising rapidly to 2000Ω above this temperature. Connect devices in series between TH1A and TH1B. Link the terminals if temperature sensors are not used.	
TH1B	Thermistor	Connection to motor thermistor		
(1)	Reference Terminal	Supply protective earth (PE). This terminal must be connected to a protective (earth) ground for permanent earthing.		
L1 *	Power Input	Single and three phase live connection	$220 / 240 \mathrm{~V}$ ac $\pm 10 \%$ rms with respect to L2/N. $50-60 \mathrm{~Hz}$ (IT/TN)	$220 / 240 \mathrm{~V}$ or $380 / 460 \mathrm{~V}$ ac $\pm 10 \%$ rms with respect to L2, L3 phase-tophase. $50-60 \mathrm{~Hz}$ (IT/TN)
$\begin{gathered} \mathrm{L} 2 / \mathrm{N}^{*} \\ \mathrm{~L} 2 \end{gathered}$	Power Input	Single phase neutral (or L2 three phase live connection)	$220 / 240 \mathrm{~V}$ ac $\pm 10 \%$ with respect to L1. 5060 Hz (IT/TN)	$220 / 240 \mathrm{~V}$ or $380 / 460 \mathrm{~V}$ ac $\pm 10 \%$ with respect to L1, L3. 50-60Hz (IT/TN)
L3	Power Input	Three phase live connection	Not applicable	$220 / 240 \mathrm{~V}$ or $380 / 460 \mathrm{~V}$ ac $\pm 10 \%$ with respect to L1, L2. 50-60Hz (IT/TN)
DC-	No user connection			
DC+	Dynamic Brake	Connection to external brake resistor	Not applicable	Frame 2 (high volt only) \& 3. See "Internal Dynamic Brake Switch" table
DBR	Dynamic Brake	Connection to external brake resistor	Not applicable	Frame 2 (high volt only) \& 3 . See "Internal Dynamic Brake Switch" table
MI/U M2/V M3/W	Motor Outputs	Connection for motor	Motor rated at: 0 to $220 / 240 \mathrm{~V}$ ac 0 to 240 Hz	Motor rated at: 0 to $220 / 240 \mathrm{~V}$ or 0 to $380 / 460 \mathrm{~V}$ ac 0 to 240 Hz
(-	Reference Terminal	Supply protective earth (PE). This terminal must be connected to a protective (earth) ground for permanent earthing.		

Terminal Block Acceptance Sizes

Wire sizes should be chosen with respect to the operating conditions and your local National Electrical Safety Installation Requirements. Local wiring regulations always take precedence.

Frame Size	Power Terminals (maximum wire size)	Brake Terminals (maximum wire size)	Thermistor/Control Terminals (maximum wire size)
Frame 1 230 V	$2.5 \mathrm{~mm}^{2} / 12 \mathrm{AWG}$	Not Applicable	$2.5 \mathrm{~mm}^{2} / 12 \mathrm{AWG}$
Frame 2 230 V	$2.5 \mathrm{~mm}^{2} / 12 \mathrm{AWG}$	Not Applicable	$2.5 \mathrm{~mm}^{2} / 12 \mathrm{AWG}$
Frame 2 400 V	$2.5 \mathrm{~mm}^{2} / 12 \mathrm{AWG}$	$2.5 \mathrm{~mm}^{2} / 12 \mathrm{AWG}$	$2.5 \mathrm{~mm}^{2} / 12 \mathrm{AWG}$
Frame 3 230 V	$6.0 \mathrm{~mm}^{2} / 10 \mathrm{AWG}$	$6.0 \mathrm{~mm}^{2} / 10 \mathrm{AWG}$	$2.5 \mathrm{~mm}^{2} / 12 \mathrm{AWG}$
Frame 3 400 V	$6.0 \mathrm{~mm}^{2} / 10 \mathrm{AWG}$	$6.0 \mathrm{~mm}^{2} / 10 \mathrm{AWG}$	$2.5 \mathrm{~mm}^{2} / 12 \mathrm{AWG}$

Power Wiring

Note: For specified EMC emission and immunity performance, install to EMC Installation Instructions. Refer to Chapter 10: "Certification for the Drive" - for more information Terminal tightening torque for Frame 3 power connections is 20 lb .in (2.26Nm).

Protect the incoming mains supply using the specified fuse, or RCD circuit breaker Type B.
IMPORTANT: We do not recommend the use of circuit breakers (e.g. RCD, ELCB, GFCI), however, where their use is mandatory, they must:

- Operate correctly with dc and ac protective earth currents (i.e. type B RCDs as in Amendment 2 of IEC755).
- Have adjustable trip amplitude and time characteristics to prevent nuisance tripping on switch-on.

Control Wiring

Control wiring of between $0.08 \mathrm{~mm}^{2}$ (28AWG) and $2.5 \mathrm{~mm}^{2}$ (12AWG) can be used. Ensure all wiring is rated for the highest system voltage. All control terminals are SELV, i.e. doubleinsulated from power circuits.

Using Cage Clamp Terminals

Strip wire insulation to $5-6 \mathrm{~mm}$ ($0.20-0.24$ inches), or alternatively use wire-crimps. Use a flat-bladed screwdriver, maximum blade size 3.5 mm . The cage provides the correct force for a secure connection.

IMPORTANT: DO NOT lever or turn the screwdriver.

Optional Equipment

Fitting the Remote 6511 Keypad

You can remote-mount the drive-mounted Keypad using:

- the RS232 (P3) port located under the terminal cover
- A standard P3 lead, Parker SSD Part Number CM057375U300, which is used to connect the Keypad to the drive.
Two self-tapping screws are provided with the Keypad. Remove the protective film from the gasket. An enclosure rating of IP54 is achieved for the remote Keypad when correctly mounted.

Assembly Procedure

Cut-out Dimensions

The drawing below can be photocopied actual size (100\%) and used as a template.

Fitting the Remote 6521/6901/6911 Keypad

The 6052 Mounting Kit is required to remote-mount a 6521 Keypad. An enclosure rating of IP54 is achieved for the remote Keypad when correctly mounted using the 6052 Mounting Kit.

6052 Mounting Kit Parts for the Remote Keypad

Tools Required

No. 2 Posidrive screwdriver.

6052 Mounting Kit							
1							

Assembly Procedure

Cutout Dimensions

An actual size template is provided with the Keypad/6052 Mounting Kit.

Figure 3-1 Mounting Dimensions for the Remote-Mounted Keypad 6521/6901/6911

RS485/RS232 Communication Module

You can create a network of drives by linking a Master (PC/PLC) to one or more 650 V drives fitted with this module.

Plug this Communication Module on to the front of the 650 V drive, replacing the keypad.
It converts signals from the host 650 V drive into RS485 or RS232, and vice versa, so that information can be shared between the Master and 650V drive(s).

Wiring is very simple - all connections are SELV (Safe Extra Low Voltage). Select to use RS485 or RS232 by wiring to the appropriate terminal on the module.

Note: RS485 and RS232 terminals cannot be used simultaneously.
We recommend you ground the module to the system earth using the Functional Earth terminal.

Wiring Specifications		RS232 Connections
	RS485 Connections	3-Wire Un-Shielded Cable
Network Type	2-Wire Shielded Twisted-Pair	A=RxA/TxA, B=RxB/TxB, Shield
Rx, Tx, Ground (0V)		
Connections	To RS485 Standard	To RS232 Standard
Signal Levels	$1 / 4$ Unit Load	$3 \mathrm{k} \Omega$ minimum
Receiver Input Impedance		3 metres
Maximum Cable Length	1200 m (4000ft)	57.6 kbaud
Maximum Baud Rate	57.6 kbaud	$2: 1$ master and 1 slave only
Maximum Number of Units	32 including slaves and masters	

LED Indications

The module has three LEDs providing diagnostic information about the 650V host drive's 'Health', 'Receive' and 'Transmit' activity.
HEALTH = Green, Rx = Red, Tx =Red

LED Name	LED Duty	Drive State
HEALTH	\bigcirc SHORT FLASH	Re-configuration, or corrupted non-volatile memory at power-up
	EQUAL FLASH	Tripped
	ON	Healthy
	LONG FLASH	Braking
	\bigcirc OFF	No drive power, or serious hardware fault
Rx	INTERMITTENT	Indicates activity on the 'receive' line carrying data from the Master
Tx	INTERMITTENT	Indicates activity on the 'transmit' line carrying data to the Master

Configure the Drive

Before the module can be used you must configure the drive to your system. Set-up the parameters in the SERIAL menu as appropriate. Refer to Chapter 6: "Programming Your Application" - SET::SERL Menu, parameters ${ }^{\mathrm{s}}$ SE01 to ${ }^{\mathrm{s}}$ SE08.
For Tag number information refer to the 650V Software Product Manual, available on the Parker SSD Drives website: www.SSDdrives.com.

Note: This Option can only be used on drives using soffware version 4.1 or higher.

Encoder Connections

The drive is only suitable for use with single-ended encoders. Take special care wiring the encoder to the drive due to the low level of the signals.
All wiring to the drive should be made in screened cable. Use cable with an overall screen and a screen over each individual pair. To ensure compliance with the EMC Directive the overall cable screen should be connected to the drive chassis.
Recommended cable (pairs individually screened):
Belden equivalent 8777
SSD Drives Part Number CM052666

The drive will operate with 5-24V encoders. Provide the correct supply for the encoder. Do not use the 10 V or 24 V supply from the drive.
The maximum input frequency of terminals 12 and 13 (ENCA and ENCB) is 100 kHz .

Line Choke

Cables are considered to be electrically sensitive, clean or noisy. A line choke is used to reduce harmonic emission to meet the limits of EN61000-3-2.

The choke is for use on the following drive:

Phase	Drive Nominal Input Voltage (V)	Drive Power $(\mathrm{kW} / \mathrm{hp})$	Rated Current (Aeff)	Rated Inductivity (mH)	Choke Part Number
3	400	$0.37 / 0.5$	6	4.88	CO467763U003 (Europe)

Rated Current (Aeff)	Rated Inductivity (mH)	A (mm)	B	C	D1	D2	D3	E1	E2	E3	F^{*}	G	Fixing Screws	Weight (kg/lbs)
650 Frame 2, 3-phase, $400 \mathrm{~V}, 0.37 \mathrm{~kW} / 0.5 \mathrm{Hp}$														
6	4.88	148	76	151	90	100	136	39	45	49	110	69	M4	2.1/4.63

* dimension is dependent of the air gap

chapter 4 OPERATING THE DRIVE

Pre-Operation Checks

WARNING!

Wait for 5 minutes after disconnecting power before working on any part of the system or removing the terminal cover from the drive.

Initial checks before applying power:

- Check for damage to equipment.
- Mains power supply voltage is correct.
- Motor is of correct voltage rating and is connected in either star or delta, as appropriate.
- Check all external wiring circuits - power, control, motor and earth connections.

Note: Completely disconnect the drive before point to point checking with a buzzer, or when checking insulation with a Meggar.

- Check for loose ends, clippings, drilling swarf etc. lodged in the drive and system.
- If possible check that the motor can be turned freely, and that any cooling fans are intact and free from obstruction. Ensure the safety of the complete system before the drive is energised:
- Ensure that rotation of the motor in either direction will not cause damage.
- Ensure that nobody else is working on another part of the system which will be affected by powering up.
- Ensure that other equipment will not be adversely affected by powering up.

Prepare to energise the drive and system as follows:

- Remove the supply fuses, or isolate using the supply circuit breaker.
- Disconnect the load from the motor shaft, if possible.
- If any of the drives control terminals are not being used, check whether these unused terminals need to be tied high or low.
- If the motor thermistor terminals are not connected to a motor thermistor, connect these terminals together.
- Check external run contacts are open. Check external speed setpoints are all zero.

Re-apply power to the drive and system

Initial Start-up Routines

Note: Refer to Chapter 5: "Using the Keypad" to familiarise yourself with the keypad's indications, and how to use the keys and menu structure.

IMPORTANT

When power is applied to the drive in Remote Control, it will immediately start running if the RUN signal is active.

WARNING!

Unpredictable motion, especially if motor parameters are incorrect. Ensure no personnel are in the vicinity of the motor or any connected machinery. Ensure that machinery connected to the motor will not be damaged by unpredictable motion.
Ensure that the emergency stop circuits function correctly before running the motor for the first time.

The drive can be started in either Remote Control or Local Control. By default, the drive will start in Local Control.

These routines assume that the drive's control terminals are wired as shown in the Control Wiring Connections in Chapter 3.

Connected in this way, a positive setpoint will rotate the motor in a clockwise direction when viewed down the shaft, looking toward the motor.
Note: If during the start-up routine the display shows either an alarm (indicated by the letter " A ") or a flashing Warning message, refer to Chapter 7: "Trips and Fault Finding".

A typical alarm

Local Control Operation

This is the simplest method of operating the drive. Connect the keypad to the drive and power-up the unit. The drive will display the Local screen. If not, refer to Chapter 5 and select Local Control.

Follow the instructions opposite to start and stop the motor.

Reverse: Instead of setting a negative setpoint, you can reverse the motor direction by pressing STOP $+\boldsymbol{\nabla}$, or START $+\boldsymbol{\nabla}$. To change the direction to forwards, (the normal direction), press STOP $+\boldsymbol{\Delta}$ or START + A.

Note that the Setpoint parameter will not change sign to indicate this change, however the rotating indicator on the MMI will show the direction.

We recommend that you use the STOP key commands if the motor is stopped, and the START key commands if the motor is running. The keys should be pressed and released together.

Remote Control Operation

IMPORTANT: Ensure that the speed potentiometer is set to zero.
Follow the instructions below to start and stop the motor using your control panel.
Reverse the motor's direction of rotation using the DIN2 connection ($0 \mathrm{~V}=$ forward, $+24 \mathrm{~V}=$ reverse). Alternatively, swap two of the motor phases (WARNING: Disconnect the mains supply first).

The installation of your drive is now complete:

The drive will operate as an open-loop drive. It is programmed to control an induction motor of equivalent power, current, and voltage rating to the drive. Using the keypad (or other suitable programming tool) the drive must now be set-up:

- as a simple Open-loop drive (V/F Mode) provides less torque control at low speeds, but is ideal for controlling fans and pumps
- in Sensorless Vector Mode used for maximum torque control at low speeds, for example, in operating a lift

Set－up as an Open－loop drive（V／F Mode）

The drive will run the motor without any further adjustment．However，the parameters below are pre－loaded with＂typical＂values that are dependent upon the Product Code for the drive．To improve performance you can enter＂actual＂values to suit your system；particularly P6 and P7 whose values should be found on the motor nameplate．Now refer to＂Tuning the Drive to Your System＂，page 4－5．

Note：For Product Code dependent defaults，refer to Chapter 6：＂Programming Your Application＂．

Display	Parameter	Default	Brief Description
$5[1] 1$	CONTROL MODE	VOLTS／HZ （0）	This parameter contains the main method of motor control used by the drive，and by default is set to VOLTS／HZ
P F	MOTOR CURRENT	Default is Product Code dependent	Enter the motor nameplate full－load line current
P 7	BASE FREQUENCY	Default is Product Code dependent	Enter the output frequency from the motor nameplate
P 1ヨ	FIXED BOOST	Default is Product Code dependent	Enter a boost for starting torque to help with high friction loads

Set－up using the Sensorless Vector Mode

By default，the drive is operating in V／F Mode．Use the keypad to change to Sensorless Vector Mode：

Display	Parameter	Default	Brief Description
$5\left[\begin{array}{ll}\text { L }\end{array}\right.$	CONTROL MODE	Set to SENSORLESS VEC（1）	This parameter contains the main method of motor control used by the drive，and by default is set to VOLTS／HZ

To operate in Sensorless Vector Mode，the drive needs to know more about your system．You MUST carry out an Autotune（described over the page）but first，enter＂actual＂values from your motor nameplate for the parameters listed below．

Note：For Product Code dependent defaults，refer to Chapter 6：＂Programming Your Application＂．

Display	Parameter	Default	Brief Description
P コ	MAX SPEED	Default is Product Code dependent	Set the speed in Hz at which the 650 V will run when the maximum setpoint is applied
P G	MOTOR CURRENT	Default is Product Code dependent	Enter the motor nameplate full－load line current
	BASE FREQUENCY	Default is Product Code dependent	Enter the output frequency from the motor nameplate
5¢ロコ	NAMEPLATE RPM	1445.0	Enter the motor nameplate full－load rated speed．This is the motor speed in rpm at base frequency minus full load slip
5 LL 11	MOTOR POLES	4－pole	Enter the number of motor poles shown on the motor nameplate
5 LLIE	MOTOR VOLTAGE	Default is Product Code dependent	Enter the motor nameplate voltage at base frequency
5 LL 14	MAG CURRENT	Default is Product Code dependent	Enter the motor model no－load line current only if performing a Stationary Autotune（see over the page）

Autotuning the Drive

IMPORTANT: You MUST carry out an Autotune if you intend to use the drive in Sensorless Vector Mode. If you are using it in Volts/ Hz control an Autotune is not necessary.

The Autotune procedure identifies some of the more obscure characteristics about your motor, and automatically loads them into the drive.

Follow the procedure below to complete the Autotune. When the Autotune is finished, refer to "Tuning the Drive to Your System", page 4-5.

1 Stationary or Rotating Autotune?

Will the motor spin freely during the Autotune, i.e. not connected to a load?

- If it can spin freely, use a Rotating Autotune (preferred)
- If it cannot spin freely, use a Stationary Autotune

	Action	Requirements
Rotating Autotune Preferred method	Spins the motor up to the maximum speed set by the user to identify all necessary motor characteristics	Motor must spin freely during Autotune
Stationary Autotune Only used when the motor cannot spin freely during the Autotune featureMotor does not spin during Autotune. A limited set of motor characteristics are identified	You must enter the correct value of magnetising current Do not subsequently operate the drive above base speed	

2 Performing the Autotune

$5[L \Xi \square$	AUTOTUNE MODE	0	Select the Autotune operating mode
5 LLב 1	AUTOTUNE ENABLE	0	Enables the Autotune feature. Refer to "The Autotune Feature" below.

Performing a Rotating Autotune

Check that the motor can rotate freely in the forward direction. Ensure also that the motor is unloaded. Ideally, the motor shaft should be disconnected. If the motor is connected to a gearbox this is ok, provided that there is nothing on the output of the gearbox which could load the motor.

1. Set MAX SPEED ($\left.{ }^{\mathrm{P}} 2\right)$ to the maximum speed at which you will operate the drive in normal operation. The Autotune will characterise the motor up to 30% above this speed. If you later wish to run faster than this, you will need to carry out another Autotune.
2. Set the AUTOTUNE MODE (${ }^{s}$ CL20) parameter to ROTATING (1).
3. Set AUTOTUNE ENABLE (${ }^{\text {s }}$ CL21) to 1 (TRUE), and start the drive. The drive will carry out a Rotating Autotune, indicated by the Run and Stop led's flashing on the blank cover when fitted, or by flashing $R E \Pi$ on the keypad. This may take several minutes, during which the motor will be accelerated to maximum speed and then brought to a stop. When complete, the drive is returned to the stopped condition and the AUTOTUNE ENABLE parameter is reset to 0 (FALSE).

Performing a Stationary Autotune

Before starting the stationary Autotune, you MUST enter the value of magnetising current for the motor (${ }^{s}$ CL14). This may be available on the motor nameplate. If not, you may need to contact the motor supplier.

1. Set the AUTOTUNE MODE (${ }^{5}$ CL20) parameter to STATIONARY (0).
2. Set AUTOTUNE ENABLE (${ }^{5}$ CL21) to 1 (TRUE), and start the drive. The drive will carry out a Stationary Autotune, injecting current into the motor but not turning the shaft. The Run and Stop led's will flash on the blank cover when fitted, or $\boldsymbol{A t} \boldsymbol{\Pi}$ will flash on the keypad. When complete, the drive is returned to the stopped condition and the AUTOTUNE ENABLE parameter is reset to 0 (FALSE).

Tuning the Drive to Your System

Finally, adjust the parameters below as necessary to tune the drive to your system. Refer to Chapter 6: "Programming Your Application" for details.

Display	Parameter	Default	Brief Description
P コ	MAX SPEED	Default is Product Code dependent	Set the speed in Hz at which the 650 V will run when the maximum setpoint is applied. Sensorless Vector Mode: If you change this parameter when in this mode, you must carry out another Autotune.
P J	MIN SPEED	0.0\%	Set the minimum frequency at which the 650 V will run, as a $\%$ of MAX SPEED
P 4	ACCEL TIME	10.0 s	Set the time taken for the 650 V to ramp up from zero to MAX SPEED
P 5	DECEL TIME	10.0 s	Set the time taken for the 650 V to ramp down from MAX SPEED to zero
P B	JOG SETPOINT	10.0\%	Set the jogging speed setpoint, as a \% of MAX SPEED
P 9	RUN STOP MODE	0	Select the method by which the motor speed is reduced to zero
P 11	V/F SHAPE	LINEAR	Select LINEAR or FAN flux characteristics (constant or quadratic respectively) when operating in V/F Mode
P 12	HEAVY/NORMAL DUTY	0	Refer to Chapter 6: ${ }^{\mathrm{P}} 12$ for explanation, and consequence of changing ${ }^{\mathrm{P}} 11$
P 1ヨ	FIXED BOOST	Default is Product Code dependent	Set a boost for starting torque to help with high friction loads

4-6 Operating the Drive

Chapter 5 THE KEMPAD

The 6511 Keypad (Man-Machine Interface, MMI) provides for local control of the drive, monitoring, and complete access for application programming.

The 650 V can be fitted with either a Standard or Remote Keypad. Both Keypads fit on the front of the drive, but the Remote Keypad (with its extra connector) can also be remote-mounted up to 3 metres away using a connecting lead: refer to Chapter 3: "Installing the Drive" - Fitting the Remote Keypad.

To remove a Keypad, simply pull it away from the drive. To refit it, push it back into place.
The product rating label identifies the

Drive/Keypad type: refer to Chapter 9: "Technical Specifications" - Understanding the Product Code.

The Power-Up Condition

On initial power-up, direct from the factory, the drive is in Local Control and the MMI will display the tocal seponin, $0 . \mathrm{D}^{\text {" }}$ "

All parameters will be at factory default settings. Any changes to these conditions are automatically saved. The drive will initialise on subsequent power-ups with the previously saved settings and control mode, Local or Remote Control.

Controlling the Drive using the Keypad

Control Key Definitions

Key	Operation	Description
Escape	Navigation - Displays the previous level's menu Parameter - Returns to the parameter list Trip Display - Removes Trip or Error message from display allowing investigation of parameters	
	Navigation - Displays the next menu level, or the first parameter of the current Menu Parameter - Moves cursor to the left when the parameter is adjustable	
	Navigation - Move upwards through the menu system Parameter - Increase value of the displayed parameter Local Mode - Increase value of the local setpoint	
	Navigation - Move down through the menu system Parameter - Decrease value of the displayed parameter Local Mode - Decrease value of the local setpoint	

Display Indications

P when in the Parameter menu	Displays the units for the value:
- a negative parameter value	\boldsymbol{S} for time in seconds, \boldsymbol{A} for current in Amps
Indicates the	wher voltage in Volts, $\%$ for percentage
Control Mode	In for frequency in Hertz
Represents a rotating shaft:	
clockwise = drive running forward	
anticlockwise = drive running in reverse	Indicates parameter numbers or values,
trip information, error codes etc.	Drive is in remote control when not visible.
See "Drive Status Indications" below.	

Drive Status Indications

The keypad can display the following status information:

| Display | Status Indication and Meaning
 READY/HEALTHY No alarms
 present. Remote mode selected | Possible Cause
 must be entered before this
 parameter may be altered. |
| :--- | :--- | :--- | | Enter password to change the |
| :--- |
| parameter. Refer to page 5-7 |

Quick Application Selection

You can navigate immediately to the
APPLICATION parameter, ${ }^{\text {P }} 1$, from power-up, as shown opposite.

Hold down the key opposite:

HOLD
Power-up the drive, continue to hold for at least 1 second
Then, press the
(M)
key to display the current Application. Press again to allow the parameter to be changed.

Use the
 keys to select the appropriate Application by number.
Press the key to load the Application.
Refer to Chapter 12: "Applications" for further information.

Selecting the Menu Detail

For ease of operation the drive can display full or reduced menus．Refer to Chapter 6 to see how the setting changes the displayed menu．Additional parameters are indicated with \boldsymbol{F} in the table．

Navigate to the $5\llcorner 99$ parameter（SET：：SETP：：ST99）and press the key．This toggles full or partial menu detail．The default setting of 0 provides partial menu detail．Set the parameter to 1 to enable full menu view．

The DIAGNOSTICS Menu

Display	Name	Description
1.10	FREQUENCY	The current output frequency in Hertz
Triom	SPEED SETPOINT	The set point as a percentage of MAX SPEED
Tin	DC LINK VOLTS	Vac（rms）$\times \sqrt{ } 2=d c$ link Volts （when motor stopped）
Trin	MOTOR CURRENT	The current load value in Amps

To see the following requires detailed menus view to be enabled，see above＂Selecting the Menu Detail＂

Display	Name		Description
10	din ｜PR｜ ｜PRZ	$\begin{aligned} & \text { F } \\ & \text { 最 } \\ & \text { 易 } \end{aligned}$	INPUTS MENU： DIGIN WORD ANIN 1 VALUE ANIN 2 VALUE
OUt	doltt DPA 1 DPR2	$\begin{aligned} & \text { F } \\ & \text { F } \\ & \text { F } \\ & \text { 最 } \end{aligned}$	OUTPUTS MENU： DIGOUT WORD ANOUTI VALUE ANOUT 2 VALUE
			TRIP HISTORY MENU：
triP	EH I	F	TRIP 1 （NEWEST）
	EH2	F	TRIP 2
	EHJ	F	TRIP 3
	ヒH4	F	TRIP 4
	LHS	F	TRIP 5
	ヒH6	F	TRIP 6
	LH7	\％	TRIP 7
	ヒH日	F	TRIP 8
	LH9	F	TRIP 9
	EH 10		TRIP 10 （OLDEST）

The Menu System

Special Menu Features

How To Change a Parameter Value

You can change the values of parameters stored in the $P A F^{\Gamma}$ and $5 E E$ menus. Refer to Chapter 6: "Programming Your Application" - Configurable Parameters for further information.

- View the parameter to be edited and press to display the parameter's value.
- Select the digit to be changed (pressing the
- Use the
 keys to adjust the value. Hold the key momentarily to adjust the value marginally, or hold the key to make rapid changes; the rate of change varies with the time held.
- Press to return to the parameter display. The new value is stored.
-

Resetting to Factory Defaults (2-button reset)

Power-up the drive whilst holding the keys as shown to return to factory default settings.
This loads Application 1. Then press the E Hold down the keys opposite:
 key.

Changing the Default Operating Frequency

Power-up the drive whilst holding the keys as shown to display the Engineers Menu.
IMPORTANT: This menu contains sensitive parameters that can dramatically alter the running of the drive.

This displays parameter ${ }^{\mathrm{E}} 0.01$. Press the \triangle key to navigate to ${ }^{\mathrm{E}} 0.02$. Press the \mathbb{M} key to edit the parameter: $0=50 \mathrm{~Hz}$ (default), $1=60 \mathrm{~Hz}$. Select the required frequency then press the $E_{\text {key. }}$
Power-down the drive. No change has been made to the active configuration at this point. To save the change to parameter ${ }^{\mathrm{E}} 0.02$, you must now perform a 2-button reset (as above). Please note that this will return the drive to its factory default settings for the selected default frequency.

5-6 The Keypad

Selecting Local or Remote Control

The drive can operate in one of two ways:

Remote Control:	Allowing access for application programming using digital and analog inputs and outputs
Local Control:	Providing local control and monitoring of the drive using the Keypad

Local control keys are inactive when Remote Control is selected.
In Remote Control, the drive uses a remote setpoint. In Local Control, it uses the Local Setpoint parameter whose value is adjusted on the MMI.

Note: You can only change between Local and Remote Control when the drive is "stopped", and either r d'y or the Local Setpoint is displayed.

Remote to Local Control:

Local to Remote Control:

Note: For safety reasons, the drive will not return to Remote Control if this will cause the drive to start. Check RUN and JOG inputs are low.

Changing Direction in Local Control

When the drive is running in Local Control the direction of rotation of the motor shaft can be changed by pressing the following key combinations:

To change the direction to Forward, press UP and START or UP and STOP.
To change the direction to Reverse, press DOWN and START or DOWN and STOP.
It is recommended that if the motor is already turning, choose the key combination that includes the START key. If the motor is stopped then choose the key combination that includes the STOP key.

Password Protection

When activated, an odd-numbered password prevents unauthorised parameter modification by making all parameters read-only. The local setpoint is not made read-only if an even-numbered password is used. Password protection is set-up using the ${ }^{P} 99$ parameter

Steps	ACTIVATE		TEMPORARY DE-ACTIVATION		REMOVE PASSWORD	
	Actions	Display	Actions	Display	Actions	Display
1	$\begin{aligned} & \text { Go to }{ }^{\rho} 99 \\ & \text { Press } M \end{aligned}$	0000	Try to edit any parameter with password activated	$\begin{aligned} & \text { PR55 } \rightarrow \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { Go to }{ }^{\text {P }} 99 \\ & \text { Press }(\mathbb{M} \end{aligned}$	$\begin{aligned} & \text { PA55 } \rightarrow \rightarrow \\ & 0000 \end{aligned}$
2	Enter new password using ©	0001 for example	Enter current password using	0001 for example	Enter current password using	0001 for example
3	Press © repeatedly until top of menu is reached	「dy, Remote Setpoint or Local Setpoint	Press E	Original parameter displayed, password de-activated	Press © Reset to 0000 using	0000
4	Press E to activate password	Tdy, Remote Setpoint or Local Setpoint	A drive will power-up with the last password status. Temporary deactivation is lost on power-down.		${ }_{\text {Press }}$ (\boldsymbol{E} to remove password	P99
	Default $=0000$, de-activated Any other value is a password					

5-8 The Keypad

Chapter 6 Programming YOUR Application

You can program the drive to your specific application. This programming simply involves changing parameter values. For instance, parameter ${ }^{\mathrm{P}} 1$ selects various Applications which can be used as starting points for application-specific programming.
Each Application internally re-wires the drive for a different use when it is loaded. The default for the parameter is "1". Changing this parameter's setting to "2" will load Application 2. Refer to Chapter 12: "Applications" for further information.
If necessary, there are three parameters for tuning your drive. Refer to PID - Tuning Your Drive, page 6-14.

Saving Your Modifications

When parameter values are modified or an Application is loaded, the new settings are saved automatically. The drive will retain the new settings during power-down.

MMI Parameters

This table provides information about each parameter accessible using the keypad, or MMI (Man Machine Interface). For more information about these and additional parameters accessible using DSE Lite (or other suitable programming tool), refer to the 650V Software Product Manual on our website: www.SSDdrives.com.

Key to MMI Parameters Table

\mathbf{F}	Parameters indicated with \boldsymbol{F} are visible with full menus only. Refer to the DETAILED MENUS parameter (${ }^{\text {ST }} 99$).
\mathbf{M}	Parameters indicated with \mathbf{M} are Motor Parameters. They are not reset by changing Application using parameter ${ }^{\mathrm{P}} 1$; all other parameters are reset to default values.
$\mathbf{V F}$	Parameters indicated with $\mathbf{V F}$ are only visible when the drive is in VF (Volts/Hz) motor control mode, as selected by parameter ${ }^{\mathrm{s}} \mathrm{CL} 01$.
$\mathbf{S V}$	Parameters indicated with $\mathbf{S V}$ are only visible when the drive is in SV (Sensorless Vector) motor control mode, as selected by parameter ${ }^{\mathrm{s}} \mathrm{CL} 01$.

Note: The "Range" for a parameter value is given in the Configurable Parameters Table. Ranges for outputs are given as "-.xx \%", for example, indicating an indeterminate integer for the value, to two decimal places.

MMI Parameters Table

MMI Parameters Table			Range	Default
Display	Parameter	Description		
SET::PAR Menu				
P 1	APPLICATION	This parameter selects and loads the Application to be used. APP 0 will not control a motor. APP 6, 7 \& 8 are for future use. You can edit an Application in DSE Lite and, then set this parameter to CUSTOM to produce your own custom Application. Refer to the 650V Software Product Manual, Chapter 5: "Applications" which gives detailed information about each Application. Note: Parameter values are changed to factory settings by loading a new Application, except Motor Parameters (indicated M)	$\begin{aligned} & 0=\text { NULL } \\ & 1=\text { STANDARD } \\ & 2=\text { LOCAL/REM } \\ & \quad \text { (AUTO/MANUAL) } \\ & 3=\text { PRESETS } \\ & 4=\text { RAISE/LOWER } \\ & 5=\text { PID } \\ & 6=\text { AUXILLARY } \\ & \text { COMMS } \\ & 7=\text { APP } 7 \\ & 8=\text { APP } 8 \\ & 9=\text { CUSTOM } \end{aligned}$	1
P \downarrow	MAX SPEED M	The frequency at which the 650 V will run when maximum setpoint is applied. The default is Product Code dependent	7.5 to 300 Hz	$\begin{aligned} & \hline 50 \text { or } \\ & 60 \mathrm{~Hz} \end{aligned}$

6-2 Programming Your Application

MMI Parameters Table				
Display	Parameter	Description	Range	Default
\exists	MIN SPEED	The minimum frequency at which the 650 V will run, as a percentage of the MAX SPEED parameter	-100.0 to 100.0\%	0.0\%
4	ACCEL TIME	The time taken for the 650 V output frequency to ramp up from zero to MAX SPEED	0.0 to 3000.0s	10.0s
5	DECEL TIME	The time taken for the 650V output frequency to ramp down from MAX SPEED to zero	0.0 to 3000.0s	10.0s
6	MOTOR CURRENT M	This parameter contains the motor nameplate fullload line current	0.01 to 999.99A	product code dependent
7	BASE FREQUENCY M	The output frequency at which maximum voltage is reached. The default is Product Code dependent	7.5 to 240 Hz	$\begin{aligned} & 50 \text { or } \\ & 60 \mathrm{~Hz} \end{aligned}$
日	JOG SETPOINT	Speed the 650 V will run at if the Jog input is high, as a percentage of the MAX SPEED parameter	-100.0 to 100.0\%	10.0\%
P 9	RUN STOP MODE	RAMPED : The motor speed is reduced to zero at a rate set by DECEL TIME (${ }^{\text {P5 }}$). A 2 second DC pulse is applied at end of ramp COAST : The motor is allowed to freewheel to a standstill DC INJECTION : On a stop command, the motor volts are rapidly reduced at constant frequency to deflux the motor. A low frequency braking current is then applied until the motor speed is almost zero. This is followed by a timed DC pulse to hold the motor shaft.	$\begin{aligned} & \text { 0=RAMPED } \\ & 1=\text { COAST } \\ & 2=\text { DC INJECTION } \end{aligned}$	0
11	V/F SHAPE	LINEAR LAW: This gives a constant flux characteristic up to the BASE FREQUENCY FAN LAW: This gives a quadratic flux characteristic up to the BASE FREQUENCY. This matches the load requirement for fan and most pump applications Refer to ${ }^{\mathrm{p}} 12$ fre base frequency	$\begin{aligned} & 0=\text { LINEAR LAW } \\ & 1=\text { FAN LAW } \end{aligned}$	0

MMI Parameters Table				
Display	Parameter	Description	Range	Default
SET::CTRL Menu				
${ }^{5}$ [L] 1	CONTROL MODE	This parameter contains the main method of motor control used by the drive	0=VOLTS/HZ $1=$ SENSORLESS VEC	0
${ }^{5}$ [LOE	NAMEPLATE RPM m	This parameter contains the motor nameplate fullload rated speed. This is the motor speed in rpm at base frequency minus full load slip	0.1 to 30000.0 RPM	product code dependent
5 [L0]	FLY-CATCH ENABLE VF	Enables flycatching in Volts/Hz control mode when TRUE. Allows the drive to catch a spinning load.	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
${ }^{5}$ [10]	FLY-CATCH ENABLE SV	Enables flycatching in Sensorless Vector control mode when TRUE. Allows the drive to catch a spinning load.	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
$5[104$	SLIP COMP ENABLE VF	Slip compensation is operational when TRUE. Eliminates motor speed variations under load conditions in V/F Fluxing Mode when the correct value for MAG CURRENT is entered into ${ }^{5} \mathrm{CL} 14$	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
5 [L05	STABILISATION ENABLE VF	Enables the stabilisation function when TRUE. Eliminates light load speed variations in V/F Fluxing Mode	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	1
${ }^{5}$ [LOE	VOLTAGE CONTROL MODE \square	NONE : no attempt is made to control the PWM modulation depth for variations in dc link voltage FIXED : the drive's output volts are maintained, regardless of variations in the dc link voltage. The drive's product code sets the default value for demanded maximum output voltage (see MOTOR VOLTAGE below) AUTOMATIC : the drive performs controlled overfluxing during motor deceleration	$\begin{aligned} & \hline 0=\text { NONE } \\ & 1=\text { FIXED } \\ & 2=\text { AUTOMATIC } \end{aligned}$	0
${ }^{5}[107$	BOOST MODE EVF	Determines the relationship between fixed boost and terminal volts. There are two settings: FALSE produces the terminal volts profile shown below (with Auto Boost set to 0.0%). In this mode AUTO BOOST (CLO8) should also be set to provide optimum low speed performance. TRUE emulates the terminal volts profile provided by the Parker SSD Drives' 601 product. This allows drop in replacement of the 601 by the 650 V . AUTO BOOST (CLO8) has no effect in this mode.	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	1

MMI Parameters Table				
Display	Parameter	Description	Range	Default
${ }^{5} \mathrm{LLOB}$	AUTO BOOST日MVF	This parameter allows for load dependent，stator resistance voltage－drop compensation．This correctly fluxes the motor（under load conditions） at low output frequencies，thereby increasing available motor torque．AUTO BOOST is only used when BOOST MODE is set to 0 ． The value of the AUTO BOOST parameter determines the level of additional volts supplied to the motor for 100% load． Setting the value of AUTO BOOST too high can cause the drive to enter current limit．If this occurs， the time taken for the drive to reach operating speed will be extended．Reducing the value of AUTO BOOST will eliminate this problem．	0.00 to 25.00 \％	0.00 \％
${ }^{5}$［LO］	ENERGY SAVING FVF	When set TRUE，the demanded volts are reduced to minimise energy consumption if the drive is operating in a steady state at light load．	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
${ }^{5} \mathrm{~L}$ 10］	MOTOR CURRENT MSV	This parameter contains the motor nameplate full－ load line current	0.01 to 999．99A	product code dependent
${ }^{5} \mathrm{~L}$ L 11	MOTOR POLES MSV	This parameter contains the number of motor poles，as supplied on the motor nameplate	$\begin{aligned} & \hline 2=2 \text { pole } \\ & 4=4 \text { pole } \\ & 6=6 \text { pole } \\ & 8=8 \text { pole } \\ & 10=10 \text { pole } \\ & 12=12 \text { pole } \\ & \hline \end{aligned}$	4
${ }^{5} \mathrm{LL}$ İ	MOTOR VOLTAGE M	This parameter contains the motor nameplate voltage at base frequency	0.0 to 575.0 V	product code dependent
5 CL 14	MAG CURRENT M	This parameter contains the motor model no－load line current as determined by the Autotune，or taken from the motor nameplate	0.01 to 999.99 A	product code dependent
${ }_{5}^{5} \mathrm{~L}$ 15	$\begin{aligned} & \hline \text { POWER } \\ & \mathbf{M} \mathbf{S V} \end{aligned}$	This parameter contains the motor nameplate power．	0.00 to 355.00 kW	product code dependent
5 LL I6	MOTOR CONNECTION MSV	This parameter contains the motor nameplate connection．	$\begin{aligned} & 0=\text { DELTA } \\ & 1=\text { STAR } \end{aligned}$	1
${ }_{5}^{5} \mathrm{~L} 17$	$\begin{aligned} & \text { STATOR RES } \\ & \text { FMSV } \end{aligned}$	This parameter contains the motor model per－ phase stator resistance as determined by Autotune．	$\begin{aligned} & \hline 0.0000 \text { to } \\ & 250.0000 \Omega \end{aligned}$	product code dependent
${ }^{5}$［L 1日	LEAKAGE INDUC FMSV	This parameter contains the motor model per－ phase leakage inductance as determined by Autotune．	0.00 to 300.00 mH	product code dependent
5 ［L 19	MUTUAL INDUC日MSV	This parameter contains the motor model per－ phase mutual inductance as determined by Autotune．	0.00 to 3000.00 mH	product code dependent
${ }^{5} \mathrm{~L}$ L 1R	ROTOR TIME CONST FMSV	This parameter contains the motor model rotor time constant as determined by Autotune．	10.00 to 3000.00 ms	product code dependent
${ }^{5}$［LE］	AUTOTUNE MODE SV	Selects the Autotune operating mode．	$\begin{aligned} & 0=\text { STATIONARY } \\ & 1=\text { ROTATING } \end{aligned}$	0
5 ［Lコ1	AUTOTUNE ENABLE SV	Determines whether the Autotune sequence is operational or not．The Autotune sequence is operational when set to TRUE and the drive is run	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
5^{5} LG 1	$\begin{aligned} & \text { CURRENT LIMIT } \\ & \text { F } \end{aligned}$	This parameter sets the level of motor current，as a $\%$ of MOTOR CURRENT（ ${ }^{5} \mathrm{CL10}$ ）at which the drive begins to take current limit action．	0．00 to 300．00\％	300．00\％
${ }^{5}$［1日コ	POS TORQUE LIMIT F	This parameter sets the maximum allowed level of positive motor torque．	－500．0 to 500．0\％	200．0\％

6-6 Programming Your Application

MMI Parameters Table				
Display	Parameter	Description	Range	Default
$5[183$	NEG TORQUE LIMIT E	This parameter sets the maximum allowed level of negative motor torque.	-500.0 to 500.0\%	-200.0\%
5 [LG4	STALL TRIP TYPE F	This parameter determines whether the stall trip operates on motor torque or motor current. FALSE $=$ TORQUE, TRUE $=$ CURRENT	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	1
$5[191$	SPEED PROP GAIN FMSV	Sets the proportional gain of the loop. Speed error (revolutions per second) x proportional gain = torque percent.	0.00 to 300.00	product code dependent
5 「LGコ	SPEED INT TIME FMSV	This is the integral time constant of the speed loop. A speed error which causes the proportional term to produce a torque demand T, will cause the integral term to also ramp up to a torque demand T after a time equal to "speed int time".	1 to 15000 ms	product code dependent
$5[19]$	SPEED POS LIMIT FSV	This sets the upper limit of the speed demand.	-110.00 to 110.00\%	110.00\%
5 [L94	SPEED NEG LIMIT FSV	This sets the lower limit of the speed demand.	-110.00 to 110.00\%	-110.00\%

Programming Your Application 6-7

MMI Parameters Table				
Display	Parameter	Description	Range	Default
SET::IN Menu				
${ }^{5} 1 P \square 1$	DIN 1 INVERT	Inverts the value of the signal, TRUE or FALSE.	$\begin{aligned} & \hline 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
5 1POE	DIN 2 INVERT	As ${ }^{\text {s }}$ P01	As ${ }^{\text {s }}$ P01	0
$51 P \mathrm{OJ}$	DIN 3 INVERT	As ${ }^{\text {S }}$ P01	As siP01	0
${ }^{19} 1 P \square$	DIN 4 INVERT	As ${ }^{\text {s }}$ P01	As ${ }^{\text {s }}$ P01	0
${ }^{51 P 05}$	DIN 5 INVERT	As sip01	As ${ }^{\text {s }}$ P01	1
${ }^{51 P D E}$	DIN 6 INVERT	As spol	As ${ }^{\text {s }}$ P01	0
${ }^{51 P 07}$	DIN 7 INVERT	As spol	As ${ }^{\text {s }}$ P01	0
$5\|P\| 1$	AIN 1 SCALE		-300.0 to 300.0\%	100.0\%
${ }^{51 P} 12$	AIN 1 OFFSET		-300.0 to 300.0\%	0.0\%
${ }^{51 P 13}$	AIN 1 TYPE		$\begin{aligned} & 0=0-10 \mathrm{~V} \\ & 1=0-5 \mathrm{~V} \end{aligned}$	0
$51 P \mathrm{P} \mid$	AIN 2 SCALE		-300.0 to 300.0\%	100.0\%
$51 P \mathrm{~Pa}$	AIN 2 OFFSET		-300.0 to 300.0\%	0.0\%
${ }^{51 P コ コ}$	AIN 2 TYPE		$\begin{aligned} & \hline 0=0-10 \mathrm{~V} \\ & 1=0-5 \mathrm{~V} \\ & 2=0-20 \mathrm{~mA} \\ & 3=4-20 \mathrm{~mA} \end{aligned}$	3
${ }^{5} \mathrm{IPd} 1$	DIN 1 VALUE F	The TRUE or FALSE input (after any inversion)	$\begin{aligned} & \hline 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
${ }^{51 P d Z}$	$\text { DIN } 2 \text { VALUE }$ F	The TRUE or FALSE input (after any inversion)	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
$5 \mathrm{Prd} \mathrm{\exists}$	DIN 3 VALUE F	The TRUE or FALSE input (after any inversion)	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
${ }^{51 P d 4}$	DIN 4 VALUE F	The TRUE or FALSE input (after any inversion)	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
$51 P d 5$	DIN 5 VALUE F	The TRUE or FALSE input (affer any inversion)	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
5 P dE	DIN 6 VALUE F	The TRUE or FALSE input (after any inversion)	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
${ }^{51 P d 7}$	DIN 7 VALUE F	The TRUE or FALSE input (after any inversion)	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
5 IPA 1	AIN 1 VALUE F	The input reading with scaling and offset applied	-.x\%	-.x\%
${ }^{5} \mathrm{PPRE}$	$\begin{aligned} & \text { AIN } 2 \text { VALUE } \\ & \text { F } \end{aligned}$	The input reading with scaling and offset applied	-.x\%	-.x\%

6-8 Programming Your Application

MMI Parameters Table			Range	Default
Display	Parameter	Description		
SET::TRIP Menu				
${ }^{5}$ LOOP	DISABLE LOOP	Disables LOST I LOOP trip (4-20mA)	$\begin{aligned} & \hline 0=\text { TRIP ENABLED } \\ & 1=\text { TRIP DISABLED } \end{aligned}$	1
5 Ł \exists	AIN2 OVERLOAD	Disables the overload trip (Terminal 3)	As ${ }^{\text {s }}$ dOOP	0
55 LL	DISABLE STALL	Disables STALL trip	As ${ }^{\text {s }}$ AOOP	0
${ }^{5} \mathrm{OL}$	DISABLE MOTOR OVERTEMP	Disables the motor thermistor trip	As ${ }^{\text {s LOOP }}$	0
51 L	INVERSE TIME	Disables the inverse time trip	As ${ }^{\text {s }}$ SOOP	1
${ }^{5} \mathrm{db} \Gamma$	DYNAMIC BRAKE RESISTOR	Disables the dynamic brake resistor trip	As ${ }^{\text {s }}$ SOOP	1
${ }^{5} \mathrm{db} 5$	DYNAMIC BRAKE SWITCH	Disables the dynamic brake switch trip	As ${ }^{\text {s }}$ SOOP	1
${ }^{5} 5 \mathrm{Pd}$	SPEED FEEDBACK	Disables the speed feedback trip	As ${ }^{\text {s LOOP }}$	0
${ }^{5}$ \%5Pd	OVERSPEED	Disables the overspeed trip	As ${ }^{\text {s }}$ SOOP	0
${ }^{5}$ dl 5P	$\begin{aligned} & \hline \text { DISPLAY } \\ & \text { (KEYPAD) } \end{aligned}$	Disables the display (keypad) trip	As ${ }^{\text {s LOOP }}$	0
${ }^{5} d[\% P$	DC LINK RIPPLE F	Disables the DC link ripple trip	As ${ }^{\text {s LOOP }}$	0

SET::SERL Menu				
55E01	REMOTE COMMS SEL \square	Selects the type of remote communications mode: 0 : FALSE, and in REMOTE mode then control is from the terminals. 1 : TRUE, and in REMOTE mode then control is from the communications.	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
55Eロコ	COMMS timeout F	Sets the maximum time allowed between refreshing the COMMS COMMAND parameter. The drive will trip if this time is exceeded. Set the time to 0.00 seconds to disable this feature.	0.0 to 600.0 s	0.0s
55 O ¢	COMMS ADDRESS F	The drives identity address. Note: if set to 0 , it will only respond to broadcast messages.	0 to 255	0
${ }^{5} 5 \mathrm{E} 04$	BaUD Rate F	Selects the Baud Rate for the MODBUS protocol.	$0: 1200$ $1: 2400$ $2: 4800$ $3: 7200$ $4: 9600$ $5: 144400$ $6: 19200$ $7: 38400$ $8: 57600$	4
55 E 05	$\begin{aligned} & \text { PARITY } \\ & \boldsymbol{E} \end{aligned}$	Selects the Parity for the MODBUS protocol.	$\begin{aligned} & 0=\text { NONE } \\ & 1=O D D \\ & 2=\text { EVEN } \end{aligned}$	0
${ }^{5} 5 \mathrm{EOG}$	REPLY DELAY ms	The time in milliseconds between the drive receiving the complete request from the communications master (PLC/PC) and replying to this request.	0 to 200	5
55E07	OP PORT PROTOCOL E	Selects the protocol to be used by the keypad port on the front of the drive. When EIBISYNC ASCII is selected, BAUD RATE is 19200 and PARITY is EVEN. FIELDBUS is reserved for future use	$\begin{aligned} & 0=\text { AUTOMATIC } \\ & 1=\text { KEYPAD } \\ & 2=\text { EIBISYNC ASCII } \\ & 3=\text { MODBUS } \\ & 4=\text { FIELDBUS } \end{aligned}$	0
${ }^{5} 5 \mathrm{EOB}$	P3 PORT PROTOCOL F	Selects the protocol to be used by the RS232 programming port on the drive's control board. When EIBISYNC ASCII is selected, BAUD RATE is 19200 and PARITY is EVEN. FIELDBUS is reserved for future use.	As ${ }^{\text {S SE07 }}$	0

MMI Parameters Table				
Display	Parameter	Description	Range	Default
SET：：SETP Menu				
55ヒロ1	JOG ACCEL TIME	As ${ }^{\text {P }} 4$ ，for Jog	0.0 to 3000．0s	1.0
5らヒロコ	JOG DECEL TIME	As ${ }^{\text {P }}$ ，for Jog	0.0 to 3000．0s	1.0
55ヒロコ	RAMP TYPE	Selects the ramp type	$\begin{aligned} & 0=\text { LINEAR } \\ & 1=S \end{aligned}$	0
551近	S RAMP JERK	Rate of change of acceleration of the curve in units per second ${ }^{3}$	0.01 to 100.00 s3	10.00
551 ロ5	S RAMP CONTINUOUS	When TRUE and the S ramp is selected，forces a smooth transition if the speed setpoint is changed when ramping．The curve is controlled by the S RAMP JERK parameter．When FALSE，there is an immediate transition from the old curve to the new curve	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	1
55ヒロロ	MIN SPEED MODE	Selects a mode to determine how the drive will follow a reference：Proportional ：minimum limit， Linear ：between minimum and maximum．	$\begin{aligned} & 0=\text { PROP.W/MIN. } \\ & 1=\text { LINEAR (used by } \\ & \text { the } 601 \text { product) } \end{aligned}$	0
55t 1 1	SKIP FREQUENCY 1	This parameter contains the centre frequency of skip band 1 in Hz	0.0 to 240.0 Hz	0.0
55゙1ご	SKIP FREQUENCY BAND 1	The width of skip band 1 in Hz	0.0 to 60.0 Hz	0.0
55゙1コ	SKIP FREQUENCY 2	This parameter contains the centre frequency of skip band 2 in Hz	0.0 to 240.0 Hz	0.0
55t 14	SKIP FREQUENCY BAND 2	The width of skip band 2 in Hz	0.0 to 60.0 Hz	0.0
55ヒコ1	AUTO RESTART ATTEMPTS	Determines the number of restarts that will be permitted before requiring an external fault reset	0 to 10	0
55ヒコご	AUTO RESTART DELAY	Determines the delay between restart attempts for a trip included in AUTO RESTART TRIGGERS and AUTO RESTART TRIGGERS＋．The delay is measured from all error conditions clearing	0.0 to 600.0 s	10.0
5 こヒココ	AUTO RESTART TRIGGERS	Allows Auto Restart to be enabled for a selection of trip conditions． Refer to Chapter 6：＂Trips and Fault Finding＂－ Hexadecimal Representation of Trips	0x0000 to 0xFFFF	0x0000
55ヒゴリ	AUTO RESTART TRIGGERS＋	Allows Auto Restart to be enabled for a selection of trip conditions． Refer to Chapter 6：＂Trips and Fault Finding＂－ Hexadecimal Representation of Trips	0x0000 to 0xFFFF	0x0000
55ヒヨ1	DB ENABLE	Enables operation of the dynamic braking．	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	1
55ヒコご	DB RESISTANCE	The value of the load resistance．	1 to 1000	product code dependent
$55 レ コ コ$	DB POWER	The power that the load resistance may continually dissipate．	0.1 to 510.0 kW	product code dependent
55レコ4	DB OVER－RATING	Multiplier that may be applied to DB POWER for power overloads lasting no more than 1 second．	1 to 40	25
55ヒサ1	TORQUE FEEDBACK	Shows the estimated motor torque，as a percentage of rated motor torque．	－．xx \％	－．xx \％
55ヒ4ご	TORQUE LEVEL	This parameter sets the value of load at which AT LOAD becomes TRUE．AT LOAD is selectable by the digital inputs．Refer to ${ }^{5} \mathrm{OP} 21$ and ${ }^{s} \mathrm{OP} 31$ ． $100 \%=$ rated torque for the motor．	－300．0 to 300．0 \％	100．0 \％

6-12 Programming Your Application

MMI Parameters Table				
Display	Parameter	Description	Range	Default
SET::ENC Menu				
${ }^{5} \mathrm{E} \cap \mathrm{O1}$	ENC MODE F	Set this parameter to the requirements for your encoder: 0 : QUADRATURE (using digital inputs $6 \& 7$, ENCA and ENCB respectively) 1 : CLOCK/DIR (using digital inputs 6 \& 7, ENCA and ENCB respectively) 2 : CLOCK (using digital input 6, ENCA)	$\begin{aligned} & 0=\text { QUADRATURE } \\ & 1=\text { CLOCK/DIR } \\ & 2=\text { CLOCK } \end{aligned}$	0
${ }^{5} \mathrm{EHOL}$	ENC RESET F	When TRUE the POSITION and SPEED outputs are set (and held) at zero.	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
${ }^{5} \mathrm{EMOJ}$	ENC INVERT F	When TRUE, changes the sign of the measured speed and the direction of the position count.	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
${ }^{5} \mathrm{E} 104$	ENC LINES F	The number of lines must be set to match the type of encoder being used. Incorrect setting of this parameter will result in an erroneous speed measurement.	100 to 10000	100
${ }^{5} \mathrm{E} 105$	ENC SPEED SCALE F	This parameter allows the output "speed" to be scaled to any value the user requires. With a default value of 1.00 , the output "speed" is measured in revs per second. Changing the ENC SPEED SCALE value to 60.00 will provide an output in revs per minute. To provide an output in percent of the motor maximum speed, where maximum speed is the maximum speed your motor will run in rpm, the ENC SPEED SCALE parameter should be set to the result of: 6000	0.00 to 300.00	1.00
${ }^{5} \mathrm{EMOE}$	$\begin{aligned} & \text { ENC SPEED } \\ & \text { F } \end{aligned}$	Speed feedback, in units defined by the ENC SPEED SCALE parameter.	-.x	-.x

Configuring Terminals 9 \& 10 (Digital Input/Output)

Terminal 10 can be operated as digital input DIN 4 or digital output DOUT2. It is configured via the keypad or DSE Lite (or other suitable programming tool). The default for terminal 10 is to operate as a digital input, and the input logic is non-inverted.
Terminal 9 can be operated as digital input DIN3 or digital output DOUT1, however, it can only be configured via DSE Lite (or other suitable programming tool). The default for terminal 9 is to operate as a digital input, and the input logic is non-inverted.

Configure for use as a Digital Input (default)

For example, to use terminal 10 as an input, the output circuitry must be disabled by setting ${ }^{\mathrm{s}}$ DOP2 and ${ }^{\text {s }}$ OPD2 to zero. You can invert this logic using parameter ${ }^{\text {S }}$ IP04.

Parameter		Setting
${ }^{5}$ dOPL	DOUT2 SOURCE	0
${ }^{5} \mathrm{OPdz}$	DOUT2 INVERT	0
${ }_{5}^{5}$ P ${ }^{\text {P4 }}$	DIN4 INVERT	Default is 0 , setting to 1 inverts the input logic

Configure for use as a Digital Output

For example, to use terminal 10 as an output, select ${ }^{s}$ DOP2 to be $1,2,3,4,5$ or 6 . For instance, you could set parameter ${ }^{s}$ DOP2 to 3 to have the output go high $(24 \mathrm{~V})$ whenever the motor is running, operating an external relay or lamp. You can invert this logic using parameter ${ }^{s}$ OPD2.

Parameter		Setting	
	DOUT2 SOURCE		The output is high when:
		$1=$ HEALTH	The Run signal is not present, or no trip is active
		$2=$ TRIPPED	A trip is present
		$3=$ RUNNING	The motor is running
		4 = AT ZERO	The output frequency is below 1% of MAX SPEED (${ }^{\text {² }} 2$)
${ }^{5} \mathrm{dOPL}$		5 = AT SPEED	The output frequency is at or near Setpoint and within $\pm 1 \%$ of MAX SPEED, set by (P2). For example: if MAX SPEED $=50 \mathrm{~Hz}$ and Setpoint $=30 \mathrm{~Hz}$, then 1% of MAX SPEED $=$ 0.5 Hz . So AT LOAD is True between $30 \pm 0.5 \mathrm{~Hz}$.
		$6=$ AT LOAD	The magnitude of the output torque is greater than or equal to the torque level set in ${ }^{\text {S ST42 }}$
		7 = READY	The drive is ready to start.
		Always set ${ }^{\text {SIPO4 }}$ refer to Chapter	to 0 if using Applications 1 and 5 12.
${ }_{20} \mathrm{Pag}^{2}$	DOUT2 INVERT	Default is 0 , setting to 1 inverts the output logic	

PID - Tuning Your Drive

This section relates to the use of Application 5.
Parameters APD I to AP I : PID is used to control the response of any closed loop system. It is used specifically in system applications involving the control of drives to provide zero steady state error between Setpoint and Feedback, together with good transient performance.

Proportional Gain (APD I)

This is used to adjust the basic response of the closed loop control system. The PI error is multiplied by the Proportional Gain to produce an output.

Integral (APDE)

The Integral term is used to reduce steady state error between the setpoint and feedback values of the PI. If the integral is set to zero, then in most systems there will always be a steady state error.

Derivative (RPロコ)

This is used to correct for certain types of control loop instability, and therefore improve response. It is sometimes used when heavy or large inertia rolls are being controlled. The derivative term has an associated filter to suppress high frequency signals.

- Functions as P, PI, PID controller
- Single symmetric limit on output

A Method for Setting-up the PI Gains

The gains should be set-up so that a critically damped response is achieved for a step change in setpoint. An underdamped or oscillatory system can be thought of as having too much gain, and an overdamped system has too little.

To set up the P gain, set the I gain to zero. Apply a step change in setpoint that is typical for the System, and observe the response. Increase the gain and repeat the test until the system becomes oscillatory. At this point, reduce the P gain until the oscillations disappear. This is the maximum value of P gain achievable.

If a steady state error is present, i.e. the feedback never reaches the setpoint value, the I gain needs to be increased. As before, increase the I gain and apply the step change. Monitor the output. If the output becomes oscillatory, reduce the P gain slightly. This should reduce the steady state error. Increasing the I gain further may reduce the time to achieve zero steady state error.

These values of P and I can now be adjusted to provide the exact response required for this step change.

Parameters ${ }^{5} 5$ te i to ${ }^{5} 5 t 24$ provide the facility to automatically reset a choice of trip events and restart the drive with a programmed number of attempts. If the drive is not successfully started, a manual or remote trip reset is required.

The number of attempted restarts are recorded. This count is cleared after a trip-free period of operation (5 minutes or $4 \times$ AUTO RESTART DELAY, whichever is the longer); or after a successful manual or remote trip reset; or by removing the Run signal (Terminal 7, DIN1).

Refer to Chapter 7: "Trips and Fault Finding" - Hexadecimal Representation of Trips.

Skip Frequencies

Parameters ${ }^{5}$ ST11 to ${ }^{5}$ ST14 control two programmable skip frequencies that can prevent the drive from operating at frequencies that cause mechanical resonance in the load.

- Enter the value of the frequency that causes the resonance into the SKIP FREQUENCY parameter.
- Enter a width for the skip band into the SKIP FREQUENCY BAND parameter.

The drive will then avoid sustained operation within the forbidden band as shown in the diagram. The skip frequencies are symmetrical and thus work in forward and reverse.
Setting SKIP FREQUENCY or SKIP FREQUENCY BAND to 0 disables the corresponding band.

Minimum Speed Mode

There are two operating modes for the minimum speed feature.

Proportional with Minimum

In this mode the speed setpoint is clamped to be between the minimum speed value (P3) and 100%. This is the default for the minimum speed feature.

Linear

In this mode the speed setpoint is first clamped to be in the range 0 to 100%. It is then rescaled so that the output goes linearly between the minimum speed value (P3) and 100% for an input setpoint that goes between 0% and 100%. If the minimum speed value (P3) is negative the speed setpoint will be internally set to 0%.

Product-Related Default Values

All examples given in this book are based on a UK, $230 \mathrm{~V}, 50 \mathrm{~Hz}, 0.25 \mathrm{~kW}$ drive. This manual provides information about each parameter accessible using the keypad, or MMI (Man Machine Interface). For more information about these and additional parameters accessible using DSE Lite (or other suitable programming tool), refer to the 650V Software Product Manual on our web site: www.SSDdrives.com.

* Frequency Dependent Parameters

These parameter values (marked with "*" in the Application diagrams) are dependent upon the drive’s "default frequency".
Changing the "default frequency" parameter from 50 Hz to 60 Hz , and vice versa, causes the values of the parameters in the table below to be changed.

To change the "default frequency", power-down the drive. Power-up the drive holding down the ' E ' and DOWN keys on the keypad. Release the keys to display the ${ }^{e} 0.01$ parameter.

Caution

You are now in a menu containing some sensitive and important parameters.

Press the UP key to display the ${ }^{e} 0.02$ parameter. Press the M key. The values for this parameter are: $0=50 \mathrm{~Hz}$ default, $1=60 \mathrm{~Hz}$ default. Select the setting using the UP/DOWN keys and then press the E key. Power-down the drive and power-up again holding down the UP and DOWN keys. This resets ALL parameters to their correct default values, including Motor Parameters.

Programming Your Application 6-17

Frequency Dependent Defaults

Display	Parameter	Function Block	Tag	50 Hz Operation	60 Hz Operation
P 7	BASE FREQUENCY	MOTOR DATA	1159	50 Hz	60 Hz
5¢Lロコ	NAMEPLATE RPM	MOTOR DATA	83	\#	1750 RPM
5[LIE	MOTOR VOLTAGE	MOTOR DATA	1160	*	*
P I	MAX SPEED	REFERENCE	57	50 Hz	60 Hz
5LLIE	MOTOR CONNECTION	MOTOR DATA	124	STAR	STAR

\# The correct value is selected for the size of drive - refer to the Power Dependent Parameters table below

* The correct value is selected for the drive, however, when 60 Hz is selected the 400 V unit $=460 \mathrm{~V}$

6-1 8 Programming Your Application

** Power Dependent Parameters

These parameters (marked with "**" in the Application diagrams) are set to a value depending on the drive's overall "power-build" indicated by the Product Code. We recommend that you do not change the Product Code.

230V Build Power Dependent Defaults								
			Frame 1				Frame 2	
Parameter	Function Block	Tag	0.25 kW	0.37 kW	0.55 kW	0.75kW	1.1 kW	1.5kW
POWER	MOTOR DATA	1158	0.25 kw	0.37 kw	0.55 kw	0.75 kw	1.10 kw	1.50 kw
MOTOR CURRENT	MOTOR DATA	64	1.50 A	2.20 A	3.00 A	4.00 A	5.50 A	7.00 A
MAG CURRENT	MOTOR DATA	65	0.80 A	0.80 A	1.04 A	1.36 A	2.50 A	3.41 A
NAMEPLATE RPM	MOTOR DATA	83	$\begin{array}{r} 1380.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1380.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1400.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1400.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1420.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1420.0 \\ \text { RPM } \end{array}$
MOTOR VOLTAGE	MOTOR DATA	1160	230.0 V					
POWER FACTOR	MOTOR DATA	242	0.70	0.70	0.70	0.70	0.71	0.78
STATOR RES	MOTOR DATA	119	$\begin{array}{r} 5.2060 \\ \text { ohms } \\ \hline \end{array}$	$\begin{array}{r} 5.2060 \\ \text { ohms } \end{array}$	$\begin{array}{r} 3.8177 \\ \text { ohms } \\ \hline \end{array}$	$\begin{gathered} 2.9367 \\ \text { ohms } \end{gathered}$	$\begin{array}{r} 1.5907 \\ \text { ohms } \\ \hline \end{array}$	$\begin{array}{r} 1.1687 \\ \text { ohms } \\ \hline \end{array}$
LEAKAGE INDUC	MOTOR DATA	120	$\begin{array}{r} 110.47 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 110.47 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 81.01 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 62.32 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 33.76 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 24.80 \\ \mathrm{mH} \end{array}$
MUTUAL INDUC	MOTOR DATA	121	$\begin{array}{r} 441.90 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 441.90 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 324.06 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 249.28 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 135.02 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 99.20 \\ \mathrm{mH} \end{array}$
ROTOR TIME CONST	MOTOR DATA	1163	91.17 ms	91.17 ms	109.40	$\begin{array}{r} 109.40 \\ \mathrm{~ms} \end{array}$	136.75	$\begin{array}{r} 136.75 \\ \mathrm{~ms} \end{array}$
BRAKE POWER	DYNAMIC BRAKING	78	0.1 kW					
FREQUENCY	INJ BRAKING	577	9.0 Hz					
DEFLUX TIME	INJ BRAKING	710	0.1 s					
BASE VOLTS	INJ BRAKING	739	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%
DC LEVEL	INJ BRAKING	581	10.0 \%	10.0 \%	10.0 \%	10.0 \%	3.0 \%	3.0 \%
DC PULSE	INJ BRAKING	579	2.0 s					
FINAL DC PULSE	INJ BRAKING	580	1.0 s					
FIXED BOOST	FLUXING	107	5.00\%	5.00\%	5.00\%	5.00\%	5.00\%	5.00\%
ACCEL TIME	REFERENCE RAMP	258	10.0 s					
DECEL TIME	REFERENCE RAMP	259	10.0 s					
DEFLUX DELAY	PATTERN GEN	100	0.5 s	0.5 s	0.5 s	0.5 s	1.0 s	1.0 s
SEARCH VOLTS	FLYCATCHING	573	9.00 \%	9.00 \%	9.00 \%	9.00 \%	9.00 \%	9.00 \%
SEARCH BOOST	FLYCATCHING	32	40.00 \%	40.00 \%	40.00 \%	40.00 \%	40.00 \%	40.00 \%
SEARCH TIME	FLYCATCHING	574	5.0 s					
REFLUX TIME	FLYCATCHING	709	3.0 s					
OVERLOAD	MOTOR DATA	1164	2.0	2.0	2.0	2.0	2.0	2.0
SPEED PROP GAIN	SPEED LOOP	1187	20	20	20	20	20	20
SPEED INT TIME	SPEED LOOP	1188	500. ms					
MOTOR CONNECTION	MOTOR DATA	124	1 : STAR					
BRAKE RESISTANCE	DYNAMIC BRAKING	77	500	500	500	500	500	500
BOOST MODE	FLUXING	1058	1	1	1	1	1	1

400V Build Power Dependent Defaults

			Frame 2					
Parameter	Function Block	Tag	0.37 kW	0.55 kW	0.75 kW	1.1 kW	1.5kW	2.2 kW
POWER	MOTOR DATA	1158	0.37 kw	0.55 kw	0.75 kw	1.10 kw	1.50 kw	2.20 kw
MOTOR CURRENT	MOTOR DATA	64	1.50 A	2.00 A	2.50 A	3.50 A	4.50 A	5.50 A
MAG CURRENT	MOTOR DATA	65	0.44 A	0.60 A	0.78 A	1.00 A	1.44 A	1.96 A
NAMEPLATE RPM	MOTOR DATA	83	$\begin{array}{r} 1380.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1400.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1400.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1420.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1420.0 \\ \text { RPM } \end{array}$	$\begin{array}{r} 1420.0 \\ \text { RPM } \end{array}$
MOTOR VOLTAGE	MOTOR DATA	1160	400.0 V					
POWER FACTOR	MOTOR DATA	242	0.70	0.70	0.70	0.71	0.71	0.78
STATOR RES	MOTOR DATA	119	$\begin{array}{r} 15.7459 \\ \text { ohms } \end{array}$	$\begin{array}{r} 11.5470 \\ \text { ohms } \end{array}$	$\begin{array}{r} 8.8823 \\ \text { ohms } \end{array}$	1.5907 ohms	$\begin{array}{r} 4.8113 \\ \text { ohms } \end{array}$	$\begin{array}{r} 3.5348 \\ \text { ohms } \end{array}$
LEAKAGE INDUC	MOTOR DATA	120	$\begin{array}{r} 334.14 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 245.04 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 188.49 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 33.76 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 102.10 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 75.01 \\ \mathrm{mH} \end{array}$
MUTUAL INDUC	MOTOR DATA	121	$\begin{array}{r} 1336.55 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 980.14 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 753.95 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 135.02 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 408.39 \\ \mathrm{mH} \end{array}$	$\begin{array}{r} 300.04 \\ \mathrm{mH} \end{array}$
ROTOR TIME CONST	MOTOR DATA	1163	91.17 ms	$\begin{array}{r} 109.40 \\ \mathrm{~ms} \end{array}$	$\begin{array}{r} 109.40 \\ \mathrm{~ms} \end{array}$	$\begin{array}{r} 136.75 \\ \mathrm{~ms} \end{array}$	$\begin{array}{r} 136.75 \\ \mathrm{~ms} \end{array}$	$\begin{array}{r} 136.75 \\ \mathrm{~ms} \end{array}$
BRAKE POWER	DYNAMIC BRAKING	78	0.1 kW					
FREQUENCY	INJ BRAKING	577	9.0 Hz					
DEFLUX TIME	INJ BRAKING	710	0.1 s					
BASE VOLTS	INJ BRAKING	739	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%
DC LEVEL	INJ BRAKING	581	3.0 \%	3.0 \%	3.0 \%	3.0 \%	3.0 \%	3.0 \%
DC PULSE	INJ BRAKING	579	2.0 s					
FINAL DC PULSE	INJ BRAKING	580	1.0 s					
FIXED BOOST	FLUXING	107	5.00\%	5.00\%	5.00\%	5.00\%	5.00\%	5.00\%
ACCEL TIME	REFERENCE RAMP	258	10.0 s					
DECEL TIME	REFERENCE RAMP	259	10.0 s					
DEFLUX DELAY	PATTERN GEN	100	1.0 s					
SEARCH VOLTS	FLYCATCHING	573	9.00 \%	9.00 \%	9.00 \%	9.00 \%	9.00 \%	9.00 \%
SEARCH BOOST	FLYCATCHING	32	40.00 \%	40.00 \%	40.00 \%	40.00 \%	40.00 \%	40.00 \%
SEARCH TIME	FLYCATCHING	574	5.0 s					
REFLUX TIME	FLYCATCHING	709	3.0 s					
OVERLOAD	MOTOR DATA	1164	2.0	2.0	2.0	2.0	2.0	2.0
SPEED PROP GAIN	SPEED LOOP	1187	20	20	20	20	20	20
SPEED INT TIME	SPEED LOOP	1188	500. ms					
MOTOR CONNECTION	MOTOR DATA	124	1 : STAR					
BRAKE RESISTANCE	DYNAMIC BRAKING	77	500	500	500	200	200	200
BOOST MODE	FLUXING	1058	1	1	1	1	1	1

6-20 Programming Your Application

400V Build Power Dependent Defaults

			Frame 3			
Parameter	Function Block	Tag				
POWER	MOTOR DATA	1158	3.00 kw	4.00 kw	5.50 kw	7.50 kw
MOTOR CURRENT	MOTOR DATA	64	6.80 A	9.00 A	12.00 A	16.00 A
MAG CURRENT	MOTOR DATA	65	2.36 A	3.36 A	3.39 A	4.38 A
NAMEPLATE RPM	MOTOR DATA	83	1420.0 RPM	1420.0 RPM	1445.0 RPM	1450.0 RPM
MOTOR VOLTAGE	MOTOR DATA	1160	400.0 V	400.0 V	400.0 V	400.0 V
POWER FACTOR	MOTOR DATA	242	0.8	0.8	0.8	0.8
STATOR RES	MOTOR DATA	119	2.0620 ohms	2.0620 ohms	1.3625 ohms	1.0545 ohms
LEAKAGE INDUC	MOTOR DATA	120	43.76 mH	43.76 mH	43.37 mH	33.57 mH
MUTUAL INDUC	MOTOR DATA	121	175.03 mH	175.03 mH	173.48 mH	134.27 mH
ROTOR TIME CONST	MOTOR DATA	1163	136.75 ms	136.75 ms	276.04 ms	303.65 ms
BRAKE POWER	DYNAMIC BRAKING	78	0.2 kW	0.2 kW	0.5 kW	0.5 kW
FREQUENCY	INJ BRAKING	577	9.0 Hz	9.0 Hz	9.0 Hz	9.0 Hz
DEFLUX TIME	INJ BRAKING	710	0.5 s	0.5 s	0.5 s	0.5 s
BASE VOLTS	INJ BRAKING	739	100.00 \%	100.00 \%	100.00 \%	100.00 \%
DC LEVEL	INJ BRAKING	581	3.0 \%	3.0 \%	3.0 \%	3.0 \%
DC PULSE	INJ BRAKING	579	2.0 s	2.0 s	2.0 s	2.0 s
FINAL DC PULSE	INJ BRAKING	580	1.0 s	1.0 s	1.0 s	1.0 s
FIXED BOOST	FLUXING	107	5.00\%	5.00\%	5.00\%	5.00\%
ACCEL TIME	REFERENCE RAMP	258	10.0 s	10.0 s	10.0 s	10.0 s
DECEL TIME	REFERENCE RAMP	259	10.0 s	10.0 s	10.0 s	10.0 s
DEFLUX DELAY	PATTERN GEN	100	2.0 s	2.0 s	2.0 s	2.0 s
SEARCH VOLTS	FLYCATCHING	573	9.00 \%	9.00 \%	9.00 \%	9.00 \%
SEARCH BOOST	FLYCATCHING	32	40.00 \%	40.00 \%	40.00 \%	40.00 \%
SEARCH TIME	FLYCATCHING	574	5.0 s	5.0 s	5.0 s	5.0 s
REFLUX TIME	FLYCATCHING	709	3.0 s	3.0 s	3.0 s	3.0 s
OVERLOAD	MOTOR DATA	1164	2.0	2.0	2.0	2.0
SPEED PROP GAIN	SPEED LOOP	1187	20	20	20	20
SPEED INT TIME	SPEED LOOP	1188	500. ms	500. ms	500. ms	500. ms
MOTOR CONNECTION	MOTOR DATA	124	1 : STAR	1 : STAR	1 : STAR	1 : STAR
BRAKE RESISTANCE	DYNAMIC BRAKING	77	100	100	56	56
BOOST MODE	FLUXING	1058	1	1	1	1

Chapter 7 TRIPS AND FAULT FINDING

Trips

Trip Warning Message

The trip display message is flashed repeatedly on the screen to warn of an imminent trip. Some trip conditions need time to take effect. The warning can allow you time to rectify the situation.

The message will clear when you use the keypad, but after a short time will reappear until the problem is resolved, or the drive trips.

What Happens when a Trip Occurs

When a trip occurs, the drive's power stage is immediately disabled causing the motor and load to coast to a stop. The trip is latched until action is taken to reset it. This ensures that trips due to transient conditions are captured and the drive is disabled, even when the original cause of the trip is no longer present.

Keypad Indications

If a trip condition is detected the activated alarm is displayed on the MMI display.

Resetting a Trip Condition

All trips must be reset before the drive can be re-enabled. A trip can only be reset once the trip condition is no longer active, i.e. a trip due to a heatsink over-temperature will not reset until the temperature is below the trip level.

You can reset the trip as follows:

1. Press the (STOP) key to reset the trip and clear the alarm from the display.
2. Remove and then re-apply the RUN command and the drive will run normally. In remote mode, success is indicated by displaying $\Gamma \downarrow$ U.

Using the Keypad to Manage Trips

Trip Messages
If the drive trips, then the display immediately shows a message indicating the reason for the trip. The possible trip messages are given in the table below.

ID	Trip Name	Possible Reason for Trip
1	OVERVOLTAGE ${ }^{\mathrm{A}} \mathrm{d}[\mathrm{H} \mid$	The drive internal dc link voltage is too high: - The supply voltage is too high - Trying to decelerate a large inertia load too quickly; DECEL TIME time too short The brake resistor is open circuit
2	UNDERVOLTAGE ${ }^{\text {a }}$ [LLD	DC link low trip: Supply is too low/power down

ID	Trip Name	Possible Reason for Trip
3	$\begin{aligned} & \text { OVERCURRENT } \\ & \text { A DI } \end{aligned}$	The motor current being drawn from the drive is too high: - Trying to accelerate a large inertia load too quickly; ACCEL TIME time too short - Trying to decelerate a large inertia load too quickly; DECEL TIME time too short - Application of shock load to motor - Short circuit between motor phases - Short circuit between motor phase and earth - Motor output cables too long or too many parallel motors connected to the drive - FIXED BOOST level set too high
4	HEATSINK AHOL	Drive heatsink temperature $>100^{\circ} \mathrm{C}$: - The ambient air temperature is too high Poor ventilation or spacing between drives
5	EXTERNAL TRIP ${ }^{\text {r }}$ E	The external trip input is high: - Check configuration to identify the source of the signal (non-standard configuration)
6	INVERSE TIME ${ }^{\text {A }} I t$	A prolonged overload condition, exceeding the Inverse Time allowance, has caused the trip: - Remove the overload condition - refer to Chapter 5: ${ }^{\mathrm{P}} 12$
7	CURRENT LOOP 	A current of less than 1 mA is present when 4-20mA setpoint is selected: - Look for a wire break
8	MOTOR STALLED ${ }^{\text {f5 }} 5$ LL	The motor has stalled (not rotating) Drive in current limit >200 seconds: - Motor loading too great - FIXED BOOST level set too high
9	$\begin{aligned} & \text { ANIN FAULT } \\ & \begin{array}{cc} \text { AR } & \exists \end{array} \end{aligned}$	AIN2 overload on terminal 3: - Overcurrent applied in Current mode to terminal 3
10	BRAKE RESISTOR ${ }^{\text {A }} \mathrm{db}$ 「	External dynamic brake resistor has been overloaded: - Trying to decelerate a large inertia too quickly or too often
11	BRAKE SWITCH ${ }^{\text {A }} \mathrm{d}$ b 5	Internal dynamic braking switch has been overloaded: - Trying to decelerate a large inertia too quickly or too often
12	DISPLAY/KEYPAD ${ }^{\text {A }} \mathrm{d}$ 15P	Keypad has been disconnected from drive whilst drive is running in Local Control: - Keypad accidentally disconnected from drive (indicated over Comms, or by second keypad)
13	LOST COMMS R5[1	Lost communications: - COMMS TIMEOUT parameter set too short - Master device failed - Wiring broken - Incorrect Comms setup

ID	Trip Name	Possible Reason for Trip
14	CONTACTOR FBK 	Contactor feedback signal lost： －Check connection to the terminal wired to＂contactor closed＂parameter in Sequencing Logic（non－standard configuration）
15	$\begin{aligned} & \text { SPEED FEEDBACK } \\ & { }^{\text {A5 Pd }} \end{aligned}$	Speed feedback： －SPEED ERROR $>50.00 \%$ for 10 seconds
17	MOTOR OVERTEMP ${ }^{\text {® }} \mathrm{OL}$	The motor temperature is too high： －Excessive load －Motor voltage rating incorrect －FIXED BOOST level set too high －Prolonged operation of the motor at low speed without forced cooling －Break in motor thermistor connection
18	$\begin{aligned} & \text { CURRENT LIMIT } \\ & \begin{array}{\|c\|c\|} \hline \text { A } 1 \mathrm{H}: \end{array} \end{aligned}$	Software overcurrent trip： －If the current exceeds 180% of stack rated current for a period of 1 second，the drive will trip．This is caused by shock loads．Remove the shock load． －ACCEL TIME and／or FIXED BOOSTset too high －DECEL TIME set too low
21	LOW SPEED OVERI FIL 5Pd	The motor is drawing too much current（＞100\％）at zero output frequency： －FIXED BOOST level set too high
22	$\begin{aligned} & \text { 10V FAULT } \\ & \begin{array}{ll} \text { At } & 4 \end{array} \end{aligned}$	IOV fault： －＋10V REF overload warning（terminal 4）－ 10 mA maximum
25	DC LINK RIPPLE ${ }^{\text {A }} d[$［「	The dc link ripple voltage is too high： －Check for a missing input phase
27	$\begin{aligned} & \text { OVERSPEED } \\ & \text { 月П5Pd } \\ & \hline \end{aligned}$	Overspeed： －$>150 \%$ base speed when in Sensorless Vector mode
28	ANOUT FAULT問 5	AOUT overload on terminal 5： － 10 mA maximum
29		DIN3 overload on terminal 9 ： － 20 mA maximum
30		DOUT2 overload on terminal 10： － 50 mA maximum
31	UNKNOWN昛厂 IP	Unknown trip
32	OTHER昛厂ヨコ	＂OTHER＂trip is active（Trip ID 34 to 44 inclusive）
34	MAX SPEED LOW明上П।	During Autotune the motor is required to run at the nameplate speed of the motor．If MAX SPEED RPM limits the speed to less than this value，an error will be reported． Increase the value of MAX SPEED RPM up to the nameplate rpm of the motor（as a minimum）．It may be reduced，if required，after the Autotune is complete．

ID	Trip Name	Possible Reason for Trip
35	MAIN VOLTS LOW明にПこ	The mains input voltage is not sufficient to carry out the Autotune．Re－try when the mains has recovered．
36	NOT AT SPEED明上Пヨ	The motor was unable to reach the required speed to carry out the Autotune．Possible reasons include： －motor shaft not free to turn －the motor data is incorrect
37	MAG CURRENT FAIL明上П4	It was not possible to find a suitable value of magnetising current to achieve the required operating condition for the motor．Check the motor data is correct，especially nameplate rpm and motor volts．Also check that the motor is correctly rated for the drive．
38	NEGATIVE SLIP F明上 175	Autotune has calculated a negative slip frequency，which is not valid．Nameplate rpm may have been set to a value higher than the base speed of the motor．Check nameplate rpm，base frequency，and pole pairs are correct．
39	$\begin{aligned} & \text { TR TOO LARGE } \\ & \text { 月RLח6 } \end{aligned}$	The calculated value of rotor time constant is too large． Check the value of nameplate rpm．
40	TR TOO SMALL明 17	The calculated value of rotor time constant is too small． Check the value of nameplate rpm．
41	MAX RPM DATA ERR 明上 17 B	This error is reported when the MAX SPEED RPM is set to a value outside the range for which Autotune has gathered data．Autotune gathers data on the motor characteristics up to 30% beyond＂max speed rpm ＂．If MAX SPEED RPM is later increased beyond this range，the drive had no data for this new operating area，and so will report an error．To run the motor beyond this point it is necessary to re－autotune with MAX SPEED RPM set to a higher value．
42	LEAKGE L TIMEOUT明 179	The motor must be stationary when starting the Autotune
43	MOTOR TURNING ERR 明上חR	The motor must be able to rotate during Autotune
44	MOTOR STALL ERR明上门口	The leakage inductance measurement requires a test current to be inserted into the motor．It has not been possible to achieve the required level of current．Check that the motor is wired correctly．
－	Product Code Error A［DdE	Switch unit off／on．If persistent，return unit to factory
－	Calibration Data Error ［ C ： L	Switch unit off／on．If persistent，return unit to factory
－	Configuration Data Error ${ }^{\circ} \mathrm{d}$ ALA	Press the \boldsymbol{E} key to accept the default configuration．If persistent，return unit to factory

Hexadecimal Representation of Trips

The tables below show the possible parameter values for the AUTO RESTART TRIGGERS and AUTO RESTART TRIGGERS+ parameters, ${ }^{5}$ ST23 and ${ }^{5}$ ST24 respectively. Refer to the 650V Software Product Manual, "Trips Status" (on our website: www.SSDdrives.com) for additional trip information that is available over the Comms.

Each trip has a unique, four-digit hexadecimal number number as shown in the tables below.

${ }^{\text {s }}$ ST23 : AUTO RESTART TRIGGERS				
ID	Trip Name (MMI 6901)	Trip Name (MMI 6511 \& 6521)	Mask	User Disable
1	OVERVOLTAGE	DCHI	0x0001	
2	UNDERVOLTAGE	DCLO	0x0002	
3	OVERCURRENT	OC	0x0004	
4	HEATSINK	HOT	0x0008	
5	EXTERNAL TRIP	ET	0x0010	\checkmark
6	INVERSE TIME	51 L	0x0020	\checkmark
7	CURRENT LOOP	5 LOOP	0x0040	\checkmark
8	MOTOR STALLED	55 LLL	0x0080	\checkmark
9	ANIN FAULT	5 ¢ ヨ	0x0100	\checkmark
10	BRAKE RESISTOR	${ }^{5} \mathrm{db}$ 「	0x0200	\checkmark
11	BRAKE SWITCH	${ }^{5} \mathrm{db} 5$	0x0400	\checkmark
12	DISPLAY/KEYPAD	${ }^{5}$ dl 5P	0x0800	\checkmark
13	LOST COMMS	SCI	0x1000	\checkmark
14	CONTACTOR FBK	CNTC	0x2000	\checkmark
15	SPEED FEEDBACK	55 Pd	0x4000	\checkmark

${ }^{\text {S ST24 }}$: AUTO RESTART TRIGGERS+				
ID	Trip Name (MMI 6901)	Trip Name (MMI 6511 \& 6521)	Mask +	User Disable
17	MOTOR OVERTEMP	5 근	0x0001	\checkmark
18	CURRENT LIMIT	1 HI	0×0002	
21	LOW SPEED OVER I	LSPD	0x0010	
22	10V FAULT	T 4	0x0020	\checkmark
25	DC LINK RIPPLE	DCRP	0x0100	\checkmark
27	OVERSPEED	5 ¢5Pd	0x0400	\checkmark
28	ANOUT FAULT	T 5	0x0800	\checkmark
29	DIGIO 1 (T9) FAULT	T 9	0×1000	\checkmark
30	DIGIO 2 (T10) FAULT	T 10	0×2000	\checkmark
31	UNKNOWN	TRIP	0x4000	
32	OTHER	TR32	0x8000	
34	MAX SPEED LOW	ATN 1	0x8000	N/A
35	MAIN VOLTS LOW	ATN2	0x8000	N/A
36	NOT AT SPEED	ATN3	0x8000	N/A
37	MAG CURRENT FAIL	ATN4	0x8000	N/A
38	NEGATIVE SLIP F	ATN5	0x8000	N/A
39	TR TOO LARGE	ATN6	0x8000	N/A
40	TR TOO SMALL	ATN7	0x8000	N/A
41	MAX RPM DATA ERR	ATN8	0x8000	N/A
42	LEAKGE L TIMEOUT	ATN9	0x8000	N/A

7-6 Trips and Fault Finding

${ }^{\text {s ST24 }}$: AUTO RESTART TRIGGERS+				
ID	Trip Name $($ MMI 6901)	Trip Name (MMI 6511 \& 6521)	Mask +	User Disable
43	MOTOR TURNING ERR	ATNA	0×8000	N/A
44	MOTOR STALL ERR	ATNB	0×8000	N/A

Keypads (MMIs):

Trips shown as MMI displays in the tables above, i.e. ${ }^{5}$ L ח \square^{-}) , can be disabled using the keypads in the TRIPS menu. Other trips, as indicated, can be disabled over the Comms.

Hexadecimal Representation of Trips

When more than one trip is to be represented at the same time then the trip codes are simply added together to form the value displayed. Within each digit, values between 10 and 15 are displayed as letters A to F

For example referring to the tables above, if the AUTO RESTART TRIGGERS parameter is set to 04A0, then this represents:
a " 4 " in digit 3

Decimal number	Display
10	A
11	B
12	C
13	D
14	E
15	F

an " 8 " and a " 2 " in digit 2
($8+2=10$, displayed as \mathbf{A})
an " $\mathbf{0}$ " in digit 1
This in turn represents the trips BRAKE SWITCH, ANIN FAULT, MOTOR STALLED and INVERSE TIME.

In the same way, the AUTO RESTART TRIGGERS+ parameter set to 04A0 would represent OVERSPEED, ANIN FAULT, DESAT OVER I and 10V FAULT.

Fault Finding

Problem	Possible Cause	Remedy
Drive will not power-up	Fuse blown	Check supply details, fit correct fuse. Check Product Code against Model No.
	Faulty cabling	Check all connections are correct/secure. Check cable continuity
Drive fuse keeps blowing	Faulty cabling or connections wrong	Check for problem and rectify before replacing with correct fuse Contact Parker SSD Drives
Caulty drive	Incorrect or no supply available	Check supply details
Motor will not run at switch-on	Motor jammed	Stop the drive and clear the jam
Motor runs and stops	Motor becomes jammed	Stop the drive and clear the jam
	Open circuit speed reference	Check terminal
potentiometer		

Chapter 8 ROUTINE MANTENANCE \& REPAIR

Routine Maintenance

Periodically inspect the drive for build-up of dust or obstructions that may affect ventilation of the unit. Remove this using dry air.

There are no user-serviceable components.

IMPORTANT: MAKE NO ATTEMPT TO REPAIR THE UNIT - RETURN IT TO PARKER SSD DRIVES.

Saving Your Application Data

In the event of a repair, application data will be saved whenever possible. However, we advise you to copy your application settings before returning the unit.

Returning the Unit to Parker SSD Drives

Please have the following information available:

- The model and serial number - see the unit's rating label
- Details of the fault

Contact your nearest Parker SSD Drives Service Centre to arrange return of the item.
You will be given a Returned Material Authorisation. Use this as a reference on all paperwork you return with the faulty item. Pack and despatch the item in the original packing materials; or at least an anti-static enclosure. Do not allow packaging chips to enter the unit.

Disposal
This product contains materials which are consignable waste under the Special Waste Regulations 1996 which complies with the EC Hazardous Waste Directive - Directive 91/689/EEC.

We recommend you dispose of the appropriate materials in accordance with the valid environmental control laws. The following table shows which materials can be recycled and which have to be disposed of in a special way.

Material	Recycle	Disposal
metal	yes	no
plastics material	yes	no
printed circuit board	no	yes

The printed circuit board should be disposed of in one of two ways:

1. High temperature incineration (minimum temperature $1200^{\circ} \mathrm{C}$) by an incinerator authorised under parts A or B of the Environmental Protection Act
2. Disposal in an engineered land fill site that is licensed to take aluminium electrolytic capacitors. Do not dispose of in a land fill site set aside for domestic waste.

Packaging

During transport our products are protected by suitable packaging. This is entirely environmentally compatible and should be taken for central disposal as secondary raw material.

8-2 Routine Maintenance and Repair

Chapter 9 TECHNICAL SPECIFICATIONS

Understanding the Product Code

Model Number (Europe)

The unit is fully identified using a four block alphanumeric code which records how the drive was calibrated, and its various settings when despatched from the factory.

The Product Code appears as the "Model No." on the product rating label. Each block of the Product Code is identified as shown below.

The example below shows this is a Frame 2650 V , 230v single phase, 1.5 kW , no auxiliary supply, no brake switch, no filter, RS232 port fitted, panel mounted, no special options, English $50 \mathrm{~Hz}, 6511$ keypad option fitted.

US Catalog Number \& Legacy Product Code

The unit is identified using a 4 block alphanumeric code which records how the drive was calibrated, and its various settings when dispatched from the factory. All drives are in Standard Parker SSD Drives Livery and operate on 50/60Hz.

The Product Code appears as the "Cat No.". Each block of the Product Code is identified as below:

> | | 650V/00F3/230/SNF | | |
| :--- | :--- | :--- | :--- |
| Block | 1 | 2 | 3 |
| | example product code | | |

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Frame 1, 2, 3 - Catalog Number (North America)}

\hline Block No. \& Variable \& Description

\hline 1 \& 650 V \& Generic product

\hline 2 \& xxxx \& Four characters specifying the power output in Hp :

\hline 3 \& XXX \& Three numbers specifying the nominal input voltage rating
$$
\begin{array}{ll}
230 & 230(\pm 10 \%) 50 / 60 \mathrm{~Hz} \\
460 & 380 \text { to } 460 \mathrm{~V}(\pm 10 \%) 50 / 60 \mathrm{~Hz}
\end{array}
$$

\hline 4 \& x

x

x \& | One character speciifying the use of the Keypad: |
| :--- |
| $S=$ Standard Keypad fitted |
| $R=$ Remote Keypad fitted |
| Indicates if the drive is fitted with the Brake Switch |
| $N=$ Brake switch not fitted (230V Frames $1 \& 2$) |
| $B=$ Brake switch fitted (460V Frames 2 \& 3) |
| One character specifying the use of the Internal RFI Filter: |
| $N=$ Not fitted |
| F = Internal Supply Filter fitted |

\hline
\end{tabular}

Environmental Details

Operating Temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Storage Temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Shipping Temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Product Enclosure Rating	IP20 (UL Open Type) suitable for cubicle mount only
Cubicle Rating	Cubicle to provide 15 dB attenuation to radiated emissions between $30-100 \mathrm{MHz}$. It must also require a security tool for opening
Altitude	If >1000 metres (3300 feet) above sea level, derate Motor Power Rating by 1% per 100 metres (330 feet) to a maximum of 2000 metres (6561 feet)
Humidity	Maximum 85% relative humidity at $40^{\circ} \mathrm{C}$ non-condensing
Atmosphere	Non flammable, non corrosive and dust free
Climatic Conditions	Class 3 k 3, as defined by EN50178 (1998)
Vibration	Test Fc of $\mathrm{EN60068-2-6}$ $10 \mathrm{~Hz}<=\mathrm{f}<=57 \mathrm{~Hz}$ sinusoidal 0.075 mm amplitude $57 \mathrm{~Hz}<=\mathrm{f}<=150 \mathrm{~Hz}$ sinusoidal 1 g 10 sweep cycles per axis on each of three mutually perpendicular axis
Safety Pollution Degree Overvoltage Category	Pollution Degree III (non-conductive pollution, except for temporary condensation) Overvoltage Category III (numeral defining an impulse withstand level)

Power Details	
1-Phase Supply	$220-240 \mathrm{~V}$ ac $\pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 10 \%$, ground referenced (TN) or non-ground referenced (IT)
3-Phase Supply	$220-240 \mathrm{~V}$ ac or $380-460 \mathrm{~V}$ ac $\pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 10 \%$, ground referenced (TN) or non-ground referenced (IT)
Supply Power Factor (lag)	$0.9(@ 50 / 60 \mathrm{~Hz})$
Output Frequency	$0-240 \mathrm{~Hz}$
Overload	150% for 30 seconds
Supply Short Circuit Rating	$220-240 \mathrm{~V} 1 \phi$ product $-5000 \mathrm{~A}, 220-240 \mathrm{~V}$ ac 3ϕ product - 7500 A $380-460 \mathrm{~V} 3 \phi$ product -10000A

Electrical Ratings

Supply Short Circuit Rating

Products may be used on 50kA supplies provided an additional supply inductor is fitted, see tables below for further information:

230V

Frame Size	Motor Power	SSD Drives Part Number	MTE Part Number	Inductance mH	Rated amps
1	$0.75 \mathrm{~kW} \mathrm{1Hp}$	CO470653	RL-00401	3.00	4
2	1.5 kW 2 Hp	CO353011	RL-00801	1.50	8
3	2.2 kW 3 Hp	CO470638	RL-01201	1.25	12
3	$4 \mathrm{~kW} \quad 5 \mathrm{HP}$	CO 353012	RL-01801	0.80	18

460V

Frame Size	Motor Power	SSD Drives Part Number	MTE Part Number	Inductance mH	Rated amps
2	$0.75 \mathrm{~kW} \mathrm{1Hp}$	CO470650	RL-00201	12.00	2
2	1.5 kW 2 Hp	CO 470651	RL-00402	6.50	4
2	2.2 kW 3 Hp	CO 352782	RL-00803	5.00	8
3	$4 \mathrm{~kW} \quad 5 \mathrm{Hp}$	CO 470652	RL-00802	3.00	8
3	5.5 kW 7.5 Hp	CO 352783	RL-01202	2.50	12
3	6.0 kW 10 Hp	CO 352785	RL-01802	1.50	18
3	7.5 kW 10 Hp	CO 352785	RL-01802	1.50	18

User Relay

RL1A, RL1B.

Maximum Voltage	250 Vac
Maximum Current	4 A
Sample Interval	10 ms

Analog Inputs/Outputs	
	AIN1 and AIN2
Range	$0-10 \mathrm{~V}$ and $0-5 \mathrm{~V}$ (no sign) set via parameter ${ }^{\mathrm{S}} \mathrm{IP} 13$ (AIN1) $0-10 \mathrm{~V}, 0-5 \mathrm{~V}, 0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ (no sign) set via parameter ${ }^{\mathrm{s}}$ IP23 (AIN2) Absolute maximum input current 25 mA in current mode Absolute maximum input voltage 24 V dc in voltage mode
Nominal Input Impedance	40k impedance in voltage mode, <6V @ 20mA in current mode
Resolution	10 bits, (1 in 1024)
Dynamic Response	Sampled every 5ms

Analog Outputs

AOUT1 and AOUT2

Range	$0-10 \mathrm{~V}$ (no sign) Maximum rated output current 10 mA, with short circuit protection
Resolution	10 bits, (1 in 1024)
Dynamic Response	Updated every 5 ms Bandwidth 15 Hz

9-6 Technical Specifications

Digital Inputs

Operating Range	DIN1, DIN2, DIN3, DIN4, DIN5: $0-5 \mathrm{~V} d c=$ OFF, $15-24 \mathrm{~V} \mathrm{dc}=\mathrm{ON}$ (absolute maximum input voltage $\pm 30 \mathrm{~V} \mathrm{dc}$) IEC1131 DIN6, DIN7: $0-1.5 \mathrm{~V} d c=$ OFF, $4-24 \mathrm{~V} d c=\mathrm{ON}$ (absolute maximum input voltage $\pm 30 \mathrm{~V} \mathrm{dc}$) IEC1131	
Input Current	7.5 mA @ 24V	
Sample Interval	10 ms	

Digital Outputs

DOUT1 and DOUT2

Nominal Open Circuit Output Voltage	23 V (minimum 19V)
Nominal Output Impedance	47Ω
Rated Output Current	50 mA (either individually or as the sum of outs from terminals 6, $10 \& 17)$

Cabling Requirements for EMC Compliance

	Power Supply Cable	Motor Cable	Brake Resistor Cable	Signal/Control Cable
Cable Type (for EMC Compliance)	Unscreened	Screened/armoured	Screened/armoured	Screened
Segregation	From all other wiring (clean)	From all other wiring (noisy)	From all other wiring (sensitive)	
Length Limitations With Internal AC Supply EMC Filter	Unlimited	$* 25$ metres	25 metres	25 metres
Length Limitations Without Internal AC Supply EMC Filter	Unlimited	25 metres	25 metres	25 metres
Screen to Earth Connection		Both ends	Both ends	Drive end only
Output Choke	300 metres maximum			
*Maximum motor cable length under any circumstances				

Internal Dynamic Braking Circuit

The dynamic braking circuit is intended for with short term stopping or braking.

| $\begin{array}{c}\text { Motor Power } \\ (\mathrm{kW} / \mathrm{Hp})\end{array}$ | $\begin{array}{c}\text { Brake Switch } \\ \text { Peak Current } \\ (\mathrm{A})\end{array}$ | $\begin{array}{c}\text { Brake Switch } \\ \text { Continuous Current } \\ (\mathrm{A})\end{array}$ | $\begin{array}{c}\text { Peak Brake } \\ \text { Dissipation } \\ (\mathrm{kW} / \mathrm{Hp})\end{array}$ | $\begin{array}{c}\text { Minimum Brake } \\ \text { Resistor Value } \\ (\Omega)\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frame 2: 3 Phase (IT/TN), 400V, 100\% duty | | | | |$\}$

Extemal Brake Resistor

All 650V units are supplied without braking resistors. The dynamic brake switch terminals (where fitted) allow easy connection to an external resistor. These resistors should be mounted on a heatsink (back panel) and covered to prevent injury from burning.

Recommended Brake Resistors

The following brake resistors are available from Parker SSD Drives:
Brake Resistor Value : Frame 2 : 200 , 100W - CZ467714; 500 , 60W - CZ467715
Frame 3: $\quad 28 \Omega$, 500W ($2 \times 56 \Omega$ in parallel) - CZ467716; 36 , 500W - CZ388396;
56 , 500W - CZ467716; 100 , 200W - CZ467717

Alternative Brake Resistor Selection

Brake resistor assemblies must be rated to absorb both peak braking power during deceleration and the average power over the repeated cycles.
Peak braking power $\mathrm{P}_{\mathrm{pk}}=\frac{0.0055 \times \mathrm{J} \times\left(\mathrm{n}_{1}{ }^{2}-\mathrm{n}_{2}{ }^{2}\right)}{\mathrm{t}_{\mathrm{b}}}$ (W)
$\begin{array}{ll}\mathrm{J} & \text { - total inertia }\left(\mathrm{kgm}^{2}\right) \\ \mathrm{n}_{1} & \text { - initial speed (rpm) }\end{array}$
Average braking power $P_{a v}=\frac{P_{p k}}{t_{c}} \mathrm{xt}_{\mathrm{b}}$
$\mathrm{n}_{2} \quad$ - final speed (rpm)
$\mathrm{t}_{\mathrm{b}} \quad$ - braking time (s)
$\mathrm{t}_{\mathrm{c}} \quad$ - cycle time (s)
Obtain information on the peak power rating and the average power rating of the resistors from the resistor manufacturer. If this information is not available, a large safety margin must be incorporated to ensure that the resistors are not overloaded. By connecting these resistors in series and in parallel the braking capacity can be selected for the application.
IMPORTANT: The minimum resistance of the combination and maximum dc link voltage must be as specified.

Supply Harmonic Analysis (400V filtered)

Assumptions: (Short circuit fault to Neutral)
5 kA short circuit supply capability at $230 \mathrm{~V} 1 \phi$, equivalent to $146 \mu \mathrm{H}$ supply impedance
7.5 kA short circuit supply capability at $230 \mathrm{~V} 3 \phi$, equivalent to $56 \mu \mathrm{H}$ supply impedance

10 kA short circuit supply capability at $400 \mathrm{~V} 3 \phi$, equivalent to $73 \mu \mathrm{H}$ supply impedance
$T H D(V) \times 100=\frac{\sqrt{\sum_{\mathrm{h}=40}^{\mathrm{h}=2} \mathrm{Q}^{\mathrm{h}^{2}}}}{\mathrm{Q}^{1 \mathrm{n}}} \%$
where $\mathrm{Q}_{1 \mathrm{n}}$ is the rated rms value of the fundamental voltage of the supply transformer.
The results conform to stage 1 and stage 2 of the Engineering Recommendation G.5/4 February 2001, Classification ' C ': Limits for Harmonics in the UK Electricity Industry.

Drive Type	650 V									
Motor Power (kW)	0.37	0.55	0.75	1.1	1.5	2.2	3.0	4.0	5.5	7.5
Fundamental Voltage (V)	400	400	400	400	400	400	400	400	400	400
Typical Motor Efficiency \%	85	85	85	85	85	85	85	85	85	85
Harmonic No.	RMS Current (A)									
1	0.6	1.0	1.3	1.9	2.6	3.8	5.2	6.9	9.5	12.9
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.6	0.9	1.2	1.8	2.4	3.5	4.7	6.2	8.3	11.1
7	0.6	0.9	1.2	1.7	2.3	3.3	4.3	5.5	7.3	9.5
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	0.5	0.8	1.0	1.5	1.9	2.6	3.3	3.9	4.8	5.7
13	0.0	0.7	0.9	1.3	1.6	2.2	2.7	3.0	3.5	3.9
15	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	0.4	0.6	0.7	1.0	1.1	1.4	1.6	1.5	1.4	1.2
19	0.0	0.5	0.6	0.9	0.9	1.1	1.1	0.9	0.8	0.7
21	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	0.2	0.3	0.4	0.6	0.5	0.5	0.4	0.3	0.5	0.7
25	0.0	0.3	0.3	0.4	0.3	0.3	0.2	0.4	0.5	0.7
27	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29	0.1	0.2	0.2	0.2	0.1	0.2	0.3	0.4	0.4	0.4
31	0.0	0.1	0.1	0.1	0.1	0.2	0.3	0.3	0.3	0.3
33	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3
37	0.0	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.3
39	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total RMS Current (A)	1.4	2.1	2.8	4.0	5.1	7.2	9.5	12.0	15.8	20.8
THD (V) \%	0.1561	0.2158	0.2776	0.3859	0.4393	0.5745	0.6994	0.8111	0.9899	1.2110

Supply H	rmon sumptions: HD(ere $\mathrm{Q}_{1 \mathrm{n}}$ e results 76, Class	Anal (S 5k 7.5 10 $x 100$ he rated form to ation ' C '	is $(23$ circuit faut ort circu short cir short cir $=\sqrt{1}$ value of ge 1 , stag	V unf to Neutral) upply cap supply supply c ${ }^{2} \mathrm{Q}^{12}$, $\mathrm{Q}^{1 \mathrm{n}}$ fundam and stag	lity at 2 bility at bility at	1ϕ, equi V 3ф, eq V 3ф, eq the supply eering R ricity In	nt to lent to ent to nsfor men y.	supp supp supp G.5/3	edance edance edance mber
Drive Type					650 V				
Motor Power (kW)	0.25	0.37	0.55	0.75	1.1	1.5	2.2	3.0	4.0
Fundamental Voltage (V)	230	230	230	230	230	230	230	230	230
Typical Motor Efficiency \%	85	85	85	85	85	85	85	85	85
Harmonic No.					Curren				
1	1.3	2.0	2.9	3.9	5.7	7.8	TBA	TBA	TBA
3	1.3	1.9	2.9	3.8	5.5	7.4			
5	1.2	1.9	2.7	3.5	5.0	6.7			
7	1.1	1.7	2.5	3.1	4.4	5.4			
9	1.1	1.6	2.2	2.7	3.7	4.6			
11	1.0	1.4	1.9	2.2	2.9	3.4			
13	0.8	1.2	1.6	1.6	2.1	2.3			
15	0.7	1.0	1.3	1.2	1.4	1.4			
17	0.6	0.8	1.0	0.8	0.8	0.7			
19	0.5	0.7	0.7	0.4	0.4	0.3			
21	0.4	0.5	0.5	0.2	0.2	0.4			
23	0.3	0.3	0.3	0.2	0.3	0.4			
25	0.2	0.2	0.1	0.2	0.3	0.4			
27	0.1	0.1	0.1	0.2	0.3	0.3			
29	0.1	0.1	0.1	0.2	0.2	0.2			
31	0.0	0.1	0.1	0.1	0.1	0.1			
33	0.0	0.1	0.1	0.1	0.1	0.2			
35	0.0	0.1	0.1	0.1	0.1	0.2			
37	0.1	0.1	0.1	0.1	0.1	0.1			
39	0.0	0.1	0.1	0.1	0.1	0.1			
40	0.0	0.0	0.0	0.0	0.0	0.0			
Total RMS Current (A)	3.2	4.8	6.7	8.3	11.7	15.3			
THD (V) \%	0.5633	0.8016	1.0340	1.0944	1.4611	1.7778			

Supply Harmonic Analysis (400V unfiltered)

Assumptions: (Short circuit fault to Neutral)
5 kA short circuit supply capability at $230 \mathrm{~V} 1 \phi$, equivalent to $146 \mu \mathrm{H}$ supply impedance 7.5 kA short circuit supply capability at $230 \mathrm{~V} 3 \phi$, equivalent to $56 \mu \mathrm{H}$ supply impedance 10kA short circuit supply capability at $400 \mathrm{~V} 3 \phi$, equivalent to $73 \mu \mathrm{H}$ supply impedance
$T H D(V) \times 100=\frac{\sqrt{\sum_{\mathrm{h}=40}^{\mathrm{h}=2} \mathrm{Q}^{\mathrm{h}^{2}}}}{\mathrm{Q}^{1 \mathrm{n}}} \%$
where $\mathrm{Q}_{1 \mathrm{n}}$ is the rated rms value of the fundamental voltage of the supply transformer.
The results conform to stage 1, stage 2 and stage 3 of the Engineering Recommendation G.5/3 September 1976, Classification 'C': Limits for Harmonics in the UK Electricity Industry.

| Drive Type | 650 V | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motor Power (kW) | 0.37 | 0.55 | 0.75 | 1.1 | 1.5 | 2.2 | 3.0 | 4.0 | 5.5 | 7.5 | |
| Fundamental Voltage (V) | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | |
| Typical Motor Efficiency \% | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | |
| Harmonic No. | RMS Current (A) | | | | | | | | | | |
| 1 | 0.6 | 0.9 | 1.3 | 1.9 | 2.6 | 3.8 | 5.2 | 6.9 | 9.5 | 12.7 | |
| 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 5 | 0.6 | 0.9 | 1.2 | 1.8 | 2.4 | 3.6 | 4.7 | 6.3 | 8.4 | 11.0 | |
| 7 | 0.6 | 0.9 | 1.2 | 1.7 | 2.3 | 3.3 | 4.3 | 5.7 | 7.4 | 9.5 | |
| 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 11 | 0.5 | 0.8 | 1.0 | 1.5 | 1.9 | 2.6 | 3.3 | 4.2 | 4.9 | 5.8 | |
| 13 | 0.5 | 0.7 | 0.9 | 1.3 | 1.6 | 2.2 | 2.7 | 3.4 | 3.7 | 4.0 | |
| 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 17 | 0.4 | 0.6 | 0.7 | 0.9 | 1.2 | 1.5 | 1.6 | 1.9 | 1.5 | 1.3 | |
| 19 | 0.4 | 0.5 | 0.6 | 0.8 | 0.9 | 1.1 | 1.1 | 1.3 | 0.8 | 0.7 | |
| 21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 23 | 0.3 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.5 | 0.7 | |
| 25 | 0.2 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.2 | 0.3 | 0.5 | 0.7 | |
| 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 29 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | |
| 31 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | |
| 33 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 35 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | |
| 37 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | |
| 39 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 40 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| Total RMS Current (A) | 1.5 | 2.1 | 2.8 | 4.0 | 5.1 | 7.4 | 9.5 | 12.4 | 16.0 | 20.6 | |
| THD (V) \% | 0.1634 | 0.2209 | 0.2817 | 0.3569 | 0.4444 | 0.5886 | 0.7107 | 0.8896 | 1.0127 | 1.2138 | |

9-12 Technical Specifications

Chapter 10 CERTIFICATION FOR THE DRIVE

Requirements for EMC Compliance

Earthing Requirements

IMPORTANT: Protective earthing always takes precedence over EMC earthing.

Protective Earth (PE) Connections

Note: In accordance with installations to EN60204, only one protective earth conductor is permitted at each protective earth terminal contacting point.

Local wiring regulations may require the protective earth connection of the motor to be connected locally, i.e. not as specified in these instructions. This will not cause shielding problems because of the relatively high RF impedance of the local earth connection.

EMC Earth Connections

For compliance with EMC requirements, the " $0 \mathrm{~V} /$ signal ground" is to be separately earthed. When a number of units are used in a system, these terminals should be connected together at a single, local earthing point.
Control and signal cables connections should be made with screeened cables, with the screen connected only at the VSD end. However, if high frequency noise is still a problem, earth screen at the non VSD end via a $0.1 \mu \mathrm{~F}$ capacitor.

Note: Connect the screen (at the VSD end) to the VSD protective earth point, and not to the control board terminals.

Requirements for UL Compliance

Solid-State Motor Overload Protection

These devices provide Class 10 motor overload protection. The maximum internal overload protection level (current limit) is 150% for 30 seconds.

An external motor overload protective device must be provided by the installer where the motor has a full-load ampere rating of less than 50% of the drive output rating; or when the DISABLE STALL trip (${ }^{\mathrm{S}}$ STLL) is set to True (1); or when the STALL TIME parameter is increased above 480 seconds (refer to the 650V Software Manual, Chapter 1 : STALL TRIP.

Short Circuit Rating

The following drives are suitable for use on a circuit capable of delivering not more than:
220-240V product, $1 \phi-5000$ RMS Symmetrical Amperes
220-240V product, $3 \phi-7500$ RMS Symmetrical Amperes
380-460V product, 3 3 - 10000 RMS Symmetrical Amperes

Solid-State Short-Circuit Protection

These devices are provided with Solid-State Short-Circuit (output) Protection. Branch circuit protection requirements must be in accordance with the latest edition of the National Electrical Code NEC/NFPA-70.

Recommended Branch Circuit Protection

It is recommended that UL Listed (JDDZ) non-renewable cartridge fuses, Class K5 or H; or UL Listed (JDRX) renewable cartridge fuses, Class H, are installed upstream of the drive.

Motor Base Frequency

The motor base frequency rating is 240 Hz maximum.

10-2 Certification for the Drive

Field Wiring Terminal Markings

For correct field wiring connections that are to be made to each terminal refer to Chapter 3: "Installing the Drive" - Wiring Guidelines.

Terminal Tightening Torque

Refer to Chapter 3: "Installing the Drive" - Terminal Tightening Torque.

Terminal/Wire Sizes

North American wire sizes (AWG) are based on NEC/NFPA-70 for ampacities of thermoplastic-insulated $\left(75^{\circ} \mathrm{C}\right)$ copper conductors.

Power input and output wire sizes should allow for an ampacity of 125\% of the rated input and output amperes for motor branch-circuit conductors as specified in NEC/NFPA-70. Refer to Chapter 3: "Installing the Drive" - Terminal Block Acceptance Sizes.

Input Fuse Ratings

If fitted, fuses should be in accordance with NEC/NFPA-70.

FRAME 1 : 1-Phase (IT/TN), 230V		
Drive Power (kW/hp)	Input Current @ 5kA	Supply Fuse Rating (A) $10 \times 38 \mathrm{~mm}$
	(A)	
0.25/0.3	4.2	10
0.37/0.5	6.2	10
0.55/0.75	7.9	10
0.75/1.0	10.5	15
FRAME 2 : 1-Phase (IT/TN), 230V		
Drive Power (kW/hp)	Input Current @ 5kA	Supply Fuse Rating (A) $10 \times 38 \mathrm{~mm}$
	(A)	
1.1/1.5	13.8	20
1.5/2.0	16.0	20
FRAME 2 : 3-Phase (IT/TN), 400V		
Drive Power (kW/hp)	Input Current @ 10kA (A)	Supply Fuse Rating (A) $10 \times 38 \mathrm{~mm}$
0.37/0.5	2.5	10
0.55/0.75	3.3	10
0.75/1.0	4.1	10
1.1/1.5	5.9	10
1.5/2.0	7.5	10
2.2/3.0	9.4	15
FRAME 3 : 1-Phase (IT/TN), 230V		
Drive Power (kW/hp)	Input Current @ 7.5kA (A)	Supply Fuse Rating (A) $10 \times 38 \mathrm{~mm}$
2.2/3.0	22.0	30
FRAME 3 : 3-Phase (IT/TN), 230V		
Drive Power (kW/hp)	Input Current @ 7.5kA (A)	Supply Fuse Rating (A) $10 \times 38 \mathrm{~mm}$
2.2/3.0	14.3	20
3.0/4.0	18.1	25
4.0/5.0	23.1	30
FRAME 3 : 3-Phase (IT/TN), 400V		
Drive Power (kW/hp)	Input Current @ 10kA (A)	Supply Fuse Rating (A) $10 \times 38 \mathrm{~mm}$
3.0/4	11.1	15
4.0/5	13.9	20
5.5/7.5	18.0	25
7.5/10	23.6	30

Field Grounding Terminals

The field grounding terminals are identified with the International Grounding Symbol (IEC Publication 417, Symbol 5019).

Operating Ambient Temperature

Devices are considered acceptable for use in a maximum ambient temperature of $40^{\circ} \mathrm{C}$ (can be derated up to $50^{\circ} \mathrm{C}$).

European Directives and the CE Mark

CE Marking for Low Voltage Directive

When installed in accordance with this manual, the 650V AC Drive is CE marked by Parker SSD Drives Ltd in accordance with the low voltage directive (S.I. No. 3260 implements this LVD directive into UK law). An EC Declaration of Conformity (low voltage directive) is included at the end of this chapter.

CE Marking for EMC - Who is Responsible?

Note: The specified EMC emission and immunity performance of this unit can only be achieved when the unit is installed to the EMC Installation Instructions given in this manual.
According to S.I. No. 2373 which implements the EMC directive into UK law, the requirement for CE marking this unit falls into two categories:

1. Where the supplied unit has an intrinsic/direct function to the end user, then the unit is classed as relevant apparatus. In this situation the responsibility for certification rests with Parker SSD Drives. The Declaration of Conformity is included at the end of this Chapter.
2. Where the supplied unit is incorporated into a higher system/apparatus or machine which includes (at least) the motor, cable and a driven load but is unable to function without this unit, then the unit is classed as a component. In this circumstance, the reponsibility rests with the manufacturer/supplier/installer of the system/apparatus/machine.

EMC Compliance

All Models All models are compliant with BS EN61800-3.	
Radiated Emissions	EN50081-1(1992) and EN61800-3 unrestricted distribution when mounted inside the specified cubicle, see above. Control and motor cables must be screened and correctly fitted with glands where they exit the cubicle. Control OV must be connected to protective earth/ground.
Immunity	EN50082-1 (1997), EN61800-3 (1997), EN61000-6-2 (1999)
FRAME 1 \& 2: 1-Phase (TN only),	
Conducted Emissions	EN50081-1(1992), EN61800-3 unrestricted distribution, maximum motor cable length: 25 m
FRAME 2 \& 3 : 3-Phase, FRAME 3 : 1-Phase (TN only)	
Conducted Emissions	EN50081-2(1993), EN61800-3 restricted distribution maximum motor cable length: 25 m

Issued for compliance with the EMC Directive when the unit is used as relevant apparatus.

This is provided to aid your justification for EMC
compliance when the unit is used as a component.

650V 0.25-4.0kW 230V
C

EC Declarations of Conformity

Date CE marked first applied: 26/07/2001

In accordance with the EEC Directive 2004/108/EC

We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment) is in accordance with the relevant clauses from the following standard:-

BSEN61800-3 (2004)

Low Voltage Directive

In accordance with the EEC Directive 2006/95/EC
We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment), is in accordance with the following standard :-

EN61800-5 (2007)

Manufacturers Declarations

We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece
of equipment) is in accordance with the relevant clauses from the following standard:-

Machinery Directive

The above Electronic Products are components to be incorporated into machinery and may not be operated alone.
The complete machinery or installation using this equipment may only be put into service when the safety considerations of the Directive

89/392/EEC are fully adhered to.
Particular reference should be made to EN60204-1 (Safety of Machinery - Electrical

Equipment of Machines).
All instructions, warnings and safety information of the Product Manual must be adhered to.

Dr Martin Payn (Conformance Officer)

Parker Hannifin Ltd., Automation Group, SSD Drives Europe
NEW COURTWICK LANE, LITTLEHAMPTON, WEST SUSSEX BN 17 7RZ
TELEPHONE: +44(0)1903737000 FAX: +44(0)1903737100
Registered Number: 4806503 England. Registered Office: 55 Maylands Avenue, Hemel Hempstead, Herts HP2 4SJ

The drive is CE marked in accordance with the low voltage directive for electrical equipment and appliances in the voltage range when installed correctly.

Since the potential hazards are mainly electrical rather than mechanical, the drive does not fall under the machinery directive.
However, we do supply a manufacturer's declaration for when the drive is used(as a component) in machinery.

650V 0.37 -7.5kW 400V

Issued for compliance with the EMC Directive when the unit is used as relevant apparatus.

This is provided to aid your justification for EMC
compliance when the unit is used as a component.

EC Declarations of Conformity

Date CE marked first applied: 26/07/2001
C ϵ

Low Voltage Directive

In accordance with the EEC Directive 2006/95/EC
We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment), is in accordance with the following standard :-

EN50178 (1998)

ManUfacturers Declarations

EMC Declaration

We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece
of equipment) is in accordance with the relevant clauses from the following standard:-

BSEN61800-3 (2004)

Machinery Directive

The above Electronic Products are components to be incorporated into machinery and may not be operated alone.
The complete machinery or installation using this equipment may only be put into service when the safety considerations of the Directive

89/392/EEC are fully adhered to.
Particular reference should be made to EN60204-1 (Safety of Machinery - Electrical

Equipment of Machines).
All instructions, warnings and safety information of the Product Manual must be adhered to.

Parker Hannifin Ltd., Automation Group, SSD Drives Europe NEW COURTWICK LANE, LITTLEHAMPTON, WEST SUSSEX BN 177 RZ TELEPHONE: $+44(0) 1903737000$ FAX: $+44(0) 1903737100$
Registered Number: 4806503 England. Registered Office: 55 Maylands Avenue, Hemel Hempstead, Herts HP2 4SJ

The drive is CE marked in accordance with the low voltage directive for electrical equipment and appliances in the voltage range when installed correctly.

Since the potential hazards are mainly electrical rather than mechanical, the drive does not fall under the machinery directive. However, we do supply a manufacturer's declaration for when the drive is used(as a component) in machinery.

10-6 Certification for the Drive

Chapter 11 SERIAL COMMUNICATIONS

Connection to the P3 Port

IMPORTANT: The drive MUST be earthed. Failure to do so could damage your communications ports.
The port is an un-isolated RS232, 19200 Baud, supporting the standard EI bisynch ASCII communications protocol. Contact Parker SSD Drives for further information.

The P3 port is located under the terminal cover and can be used for pc configuration or to remote mount a RS232 keypad.

P3 Port

A standard P3 lead is used to connect to the drive.

P3 Port Pin	Lead	Signal
1	Black	OV
2	Red	5 V
3	Green	TX
4	Yellow	RX

Note: There is 5V present on pin 2 of the P3 port - do not connect this to your PC.

11-2 Serial Communications

Chapter 12 APPLICATIONS

The Default Application

The drive is supplied with 6 Applications, Application 0 to Application 5. Each Application recalls a pre-programmed structure of internal links when it is loaded.

- Application 0 will not control a motor. Loading Application 0 removes all internal links.
- Application 1 is the factory default application, providing for basic speed control
- Application 2 supplies speed control using a manual or auto setpoint
- Application 3 supplies speed control using preset speeds
- Application 4 is a set-up providing speed control with Raise/Lower Trim
- Application 5 supplies speed control with Run Forward/Run Reverse
- Appliction 6 provides for basic speed control with convenient sequencing over comms.

IMPORTANT: Refer to Chapter 5: The Keypad - Special Menu Features to reset the drive to factory default values which are suitable for most applications.

How to Load an Application

In the $P A \Gamma^{m}$ menu, go to ${ }^{\rho} \boldsymbol{I}$ and press the M key twice.
The Applications are stored in this menu.
Use the

keys to select the appropriate Application by number.
Press the key to load the Application.

Application Description

Control Wiring for Applications

The large Application Diagrams on the following pages show the full wiring for push-button starting. The diagrams on the reverse show the full wiring for single wire starting.
For the minimum connections to make the drive run refer to Chapter 3: "Installing the Drive" Electrical Installation; the remaining connections can be made to suit your system.

When you load an Application, the input and output parameters shown in these diagrams default to the settings shown. For alternative user-settings refer to the Software Product Manual, Chapter 1 "Programming Your Application".

normally open contact (relay)

normally open push-button

2-position switch

normally closed push-button

12-2 Applications

Application 1 : Basic Speed Control (default)

Application 1: Basic Speed Control (default)

This Application is ideal for general purpose applications. It provides push-button or switched start/stop control. The setpoint is the sum of the two analogue inputs AIN1 and AIN2, providing Speed Setpoint + Speed Trim capability.

Application 2 : Auto/Manual Control

Application 2: Auto/Manual Control

Two Run inputs and two Setpoint inputs are provided. The Auto/Manual switch selects which pair of inputs is active.
The Application is sometimes referred to as Local/Remote.

12-6 Applications

Application 3 : Preset Speeds

Application 3: Preset Speeds

This is ideal for applications requiring multiple discrete speed levels.
The setpoint is selected from either the sum of the analogue inputs, (as in Application 1 and known here as PRESET 0), or as one of up to seven other pre-defined speed levels. These are selected using DIN2, DIN3 and DIN4, refer to the Truth Table below.
Edit parameters AP2 to AP8 on the keypad to re-define the speed levels of PRESET 1 to PRESET 7. Reverse direction is achieved by entering a negative speed setpoint.

Preset Speed Truth Table

DIN4	DIN3	DIN2	Preset
OV	OV	OV	0
OV	0 V	24 V	1
0 V	24 V	0 V	2
0 V	24 V	24 V	3
24 V	0 V	0 V	4
24 V	0 V	24 V	5
24 V	24 V	0 V	6
24 V	24 V	24 V	7

12-8 Applications

Application 4 : Raise/Lower Trim

Application 4: Raise/Lower Trim

This Application mimics the operation of a motorised potentiometer. Digital inputs allow the setpoint to be increased and decreased between limits. The limits and ramp rate can be set using the keypad.
The Application is sometimes referred to as Motorised Potentiometer.

Application 5 ：PID

Application 5： PI Control

EASY TUNING FOR SETPOINT／FEEDBACK CONTROL SUCH AS AIR HANDLING OR PUMPING

$$
\begin{array}{ll}
\hline P & 1 \\
\hline
\end{array}=5
$$

Italic text indicates Default

APDI P GAIN

APDI P GAIN
APOZ

PUSH－BUTTON

PROCESS FEEDBACK 4－20 5，ควヨ $=3$

Application 5: PID

A simple application using a Proportional-Integral-Derivative 3-term controller. The setpoint is taken from AIN1, with feedback signal from the process on AIN2. The scale and offset features of the analogue input blocks may be used to correctly scale these signals. The difference between these two signals is taken as the PID error. The output of the PID block is then used as the drive setpoint.

Application 6 : Auxilliary Comms

Application 6: AUXILLIARY COMMS

General purpose implementation of basic speed control, with sequencing and speed reference conveniently controlled and monitored (via just 3 parameters) over comms.

AP01 (Tag 599)

Mask	Function
Bit 4	Jog
Bit 3	Trip reset
Bit 2	Reverse
Bit 1	Enable
Bit 0	Run forward

AP03 (Tag 598)

Mask	Diagnostic
Bit 13	At speed
Bit 12	Zero speed
Bit 11	Ramping
Bit 10	Fan running
Bit 9	Healthy
Bit 8	Reversed
Bit 7	System reset
Bit 6	Ready
Bi 5	Switched on
Bit 4	Switch on enabled
Bit 3	Stopping
Bit 2	Jogging
Bit 1	Running
Bit 0	Tripped

12-14 Applications

Parker Hannifin Ltd., Automation Group, SSD Drives Europe New Courtwick Lane, Littlehampton, West Sussex BN17 7RT Tel: +1(0)903 737000 Fax: +1(0)903 737100

CANADA

Parker Hannifin Canada Motion \& Control Division 160 Chisholm Drive Milton, Ontario L9T 3G9
Tel: +1 (905) 693-3000
Fax: +1(905) 876-1958

GERMANY

Parker Hannifin GmbH
Von-Humboldt-Strasse 10
64646 Heppenheim
Tel: +49 (6252) 798200
Fax: +49(6252) 798205

CHINA

Parker Hannifin Motion \& Control (Shanghai) Co. Ltd., 280 Yunqiao Road
Jinqiao Export Processing Zone, Pudong District, Shanghai 201206
Tel: +86(21)5031 2525
Fax: +86(21)5854 7599

ITALY

Parker Hannifin SPA
Via C. Gounod,
Cinisello Balsamo
1-20092, Milano
Tel: +39(0236) 1081
Fax: +39(0236) 108400

FRANCE

Parker SSD Parvex
8 Avenue du Lac
B.P. 249

21007 Dijon Cedex
Tel: +33(0)80 424140
Fax: +33(0)80 424123

USA

Parker Hannifin Corporation
SSD Drives
9225 Forzyth Park Drive
Charlotte
North Carolina 28273
Tel: +1(704)588 3246
Fax: +1(704)5883249

Also availability and service support also in:
Argentina • Australia • Austria • Bangladesh • Belgium • Brazil • Chile • Columbia • Costa Rica • Cyprus•Czech Republic • Denmark • Ecuador • Egypt • Finland • Greece • Hong Kong • Hungary • India • Indonesia • Iran • Ireland - Israel • Japan • Jordan • Kenya • Korea • Kuwait • Lithuania • Malaysia • Netherlands • New Zealand • Nigeria • Norway • Peru • Philippines • Poland • Portugal • Quatar • Romania • Russia • Saudi Arabia • Singapore • Slovenia
\bullet Slovakia • South Africa • Spain • Sri Lanka • Sweden • Switzerland • Taiwan • Turkey • United Arab Emirates * Vietnam • Zimbabwe

