Intelligent Drivesystems, Worldwide Services

ATEX
 konform

Quick commissioning:

 page 123
GB

BU 0200
NORDAC SK 200E
Frequency inverter manual

N O R D A C SK 200E frequency inverters

Safety and operating instructions for drive power converters

(as per: Low Voltage Directive 2006/95/EEC)

1. General

During operation, drive power converters may, depending on their protection class, have live, bare, moving or rotating parts or hot surfaces.
Unauthorised removal of covers, improper use, incorrect installation or operation causes a risk of serious personal injury or material damage.
Further information can be found in this documentation.
All transportation, installation, initialisation and maintenance work must be carried out by qualified personnel (compliant with IEC 364, CENELEC HD 384, DIN VDE 0100, IEC 664 or DIN VDE 0110, and national accident prevention regulations).
For the purposes of these basic safety instructions, qualified personnel are persons who are familiar with the assembly, installation, commissioning and operation of this product and who have the relevant qualifications for their work.

2. Proper use in Europe

Drive power converters are components intended for installation in electrical systems or machines.
When installed in machines, the drive power converter cannot be commissioned (i.e. commencement of the proper use) until it has been ensured that the machine meets the provisions of the EC Directive 98/37/EEC (Machine Directive); EN 60204 must also be complied with.
Commissioning (i.e. implementation of the proper use) is only permitted if the EMC Directive (2004/108/EEC) is complied with.
The drive power converters meet the requirements of the Low Voltage Directive 2006/95/EEC. The harmonized standards stated in the Declaration of Conformity are used for the drive power converters.
Technical data and information for connection conditions can be found on the rating plate and in the documentation, and must be complied with.
The drive power converters may only be used for the safety functions which are described and for which they have been explicitly approved.

3. Transport, storage

Information regarding transport, storage and correct handling must be complied with.

4. Installation

The installation and cooling of the equipment must be implemented according to the regulations in the corresponding documentation.

The drive power converters must be protected against impermissible loads. Especially during transport and handling, components must not be deformed and/or insulation distances must not be changed. Touching of electronic components and contacts must be avoided.
Drive power converters have electrostatically sensitive components, which can be easily damaged by incorrect handling. Electrical components must not be mechanically damaged or destroyed (this may cause a health hazard!).

5. Electrical connections

When working on live drive power converters, the applicable national accident prevention regulations must be complied with (e.g. VBG A3, formerly VBG 4).
The electrical installation must be implemented according to the applicable regulations (e.g. cable cross-section, fuses, ground lead connections). Further information is contained in the documentation.

Information about EMC-compliant installation - such as shielding, earthing, location of filters and installation of cables can be found in the drive power converter documentation. These instructions must be complied with even with CE marked drive power converters. Compliance with the limiting values specified in the EMC regulations is the responsibility of the manufacturer of the system or machine.

6. Operation

Where necessary, systems where drive power converters are installed must be equipped with additional monitoring and protective equipment according to the applicable safety requirements, e.g. legislation concerning technical equipment, accident prevention regulations, etc.
The parameterisation and configuration of the drive power converter must be selected so that no hazards can occur.
All covers must be kept closed during operation.

7. Maintenance and repairs

After the drive power converter is disconnected from the power supply, live equipment components and power connections should not be touched immediately, because of possible charged capacitors. Observe the relevant information signs located on the drive power converter.
Further information can be found in this documentation.

Documentation

Designation: BU0200 GB
Part No.: 6072001
Device series: SK 205E, SK 215E, SK 225E, SK 235E
Device types: SK 2xxE-250-112-O ... SK 2xxE-750-112-O,
0.25-0.75kW, 1~100-120V, Output. 230V

SK 2xxE-250-123-A ... SK 2xxE-111-123-A, 0.25-1.1kW, 1~ 220-240V
SK 2xxE-250-323-A ... SK 2xxE-401-323-A, 0.25 - 4.0kW, 3~ 220-240V
SK 2xxE-550-340-A ... SK 2xxE-751-340-A, 0.55-7.5kW, 3~ 380-480V

Version list

Designation of previous versions	Software Version	Comments
BU 0200 GB, March 2009	V 1.1 R1	First version based on BU 0500 DGB / 2008
BU 0200 GB, March 2010 Part No. 6072001 / 1310	V 1.2 R0	Extensively revised version including: general correction of errors, adaptation of section structure, inclusion of parameters for software V 1.2 CSA-Filter (Section 2.4) Incremental encoder connection (Section 2.8.3) ATEX (Section 2.9) Options (incl. detailed description of I/O extension) (Section 3) Quick commissioning (5.1.1) KTY-84 Temperature measurement (Section 5.3) AS Interface (Section 5.4)

Publisher

Getriebebau NORD GmbH \& Co. KG

Rudolf-Diesel-Str. 1 • D-22941 Bargteheide, Germany • http://www.nord.com/
Tel.: +49 (0) 4532 / 401-0 • Fax +49 (0) 4532 / 401-555

Intended use of the frequency inverter

Compliance with the operating instructions is necessary for fault-free operation and the acceptance of possible warranty claims. These operating instructions must be read before working with the device!
These operating instructions contain important information about servicing. They must therefore be kept close to the device.
SK 200E frequency inverters are devices for industrial and commercial plants for operating three-phase asynchronous motors with squirrel-cage rotors. These motors must be suitable for operation with frequency inverters. Other loads must not be connected to the devices.
SK 200E frequency inverters are devices for fixed installation on motors or in systems in the vicinity of the motors to be operated. All details regarding technical data and permissible conditions at the installation site must be complied with.
Commissioning (commencement of the intended use) is not permitted until it has been ensured that the machine complies with the EMC Directive 2004/108/EEC and that the conformity of the end product meets the Machinery Directive 2006/42/EEC (observe EN 60204).
© Getriebebau NORD GmbH \& Co. KG, 2010
1 GENERAL INFORMATION 9
1.1 Overview 10
1.2 Delivery 11
1.3 Scope of supply 11
1.4 Safety and installation information 12
1.5 Certifications 14
1.5.1 European EMC Directive 14
1.5.2 Approval for UL and cUL 14
1.5.3 C-Tick labelling 15
1.5.4 RoHS compliance 15
1.6 Nomenclature / type codes 16
1.6.1 Type codes / Frequency inverter - basic device 16
1.6.2 Type codes / Adapter unit - frequency inverter 17
1.6.3 Type codes / Adapter unit - Technology Unit 18
1.6.4 Type codes / Optional modules 19
1.7 Version with protection class IP55 / IP66 20
2 ASSEMBLY AND INSTALLATION 21
2.1 Installation and assembly 21
2.1.1 Mounting the adapter unit 22
2.1.2 Adapters for Different Motors 23
2.1.3 Installation of the SK 200E 24
2.1.4 Optional locations for the "SK T14-..." adapter unit 25
2.2 Dimensions: SK 200E 26
2.2.1 Power rating / Motor size 26
2.2.2 SK 200E mounted on motor 27
2.2.3 SK 200E Wall-mounting 28
2.3 Brake resistor (BR) 29
2.3.1 Internal brake resistor SK BRI4- 29
2.3.2 External brake resistor SK BRE4- 30
2.3.3 External brake resistor dimensions 30
2.3.4 Brake resistor, electrical data 31
2.4 Voltage limitation filter SK CIF 32
2.4.1 General information 32
2.4.2 Type code 32
2.4.3 Installation 33
2.4.4 Connection plan 33
2.4.5 Technical data 34
2.5 Wiring guidelines 35
2.6 Electrical Connection 36
2.7 Electrical connection of the power unit 37
2.7.1 Mains connections (X1 - L1, L2, L3, EARTH) 38
2.7.2 Motor cable (X2 - U, V, W, earth). 39
2.7.3 Brake resistor connection (X2 - +B, -B) 39
2.7.4 Electro-mechanical brake 40
2.7.5 Mains supply jumpers 40
2.7.6 Internal jumper wiring 41
2.8 Electrical connection of SK 200E control unit 42
2.8.1 Control terminals, SK 2x5E versions 43
2.8.2 Details of the SK 2×5 E control connections 44
2.8.3 Colour and contact assignments for incremental encoders (HTL) 47
2.9 ATEX Zone 22 for SK 2x5E 48
2.9.1 Modified SK 2x5E for compliance with Category 3D 49
2.9.2 Options for ATEX Zone 22 3D 49
2.9.3 Maximum output voltage and torque reduction 52
2.9.4 Commissioning information 53
2.9.5 EC declaration of conformity 54
2.10 Outdoor installation 55
3 OPTIONS 56
3.1 Overview of optional modules 57
3.1.1 Overview of internal customer units SK CU4- 57
3.1.2 Overview of external technology units SK TU4- 58
3.2 Installation of optional modules 61
3.2.1 Installation of internal customer units SK CU4- 61
3.2.2 Installation of external technology units SK TU4- 62
3.3 Control connections and configuration 64
3.4 Details of internal Customer Units SK CU4- 65
3.4.1 Mains Unit, SK CU4-24V 65
3.4.2 Potentiometer Adapter, SK CU4-POT 68
3.4.3 SK CU4-IOE-, I/O extension 70
3.4.4 PROFIBUS DP, SK CU4-PBR 76
3.4.5 CANopen, SK CU4-CAO 78
3.4.6 DeviceNet, SK CU4-DEV 80
3.5 Details of external Technology Units SK TU4- 82
3.5.1 Adapter Unit SK TI4-TU-BUS /-NET 82
3.5.2 Mains Unit, SK TU4-24V- 85
3.5.3 PotentiometerBox SK TU4-POT- 86
3.5.4 I/O Extension, SK TU4-IOE, ...-M12 87
3.5.5 PROFIBUS DP, SK TU4-PBR, ...-M12 92
3.5.6 CANopen, SK TU4-CAO, ...-M12 96
3.5.7 DeviceNet, SK TU4-DEV, ...-M12 100
4 SK 200E DISPLAYS AND CONTROL 104
4.1 Overview of external control devices 105
4.1.1 SimpleBox, SK CSX-3H 106
4.1.2 ParameterBox SK PAR-3H 111
4.1.3 ParameterBox parameters 117
4.1.4 ParameterBox error messages 119
5 COMMISSIONING, SK 200E 122
5.1 Minimal configuration without options 122
5.1.1 Quick commissioning 123
5.1.2 DIP switch configuration 125
5.1.3 Potentiometers P1 and P2 and diagnostic LEDs 127
5.2 Factory settings 130
5.3 KTY84-130 connection 131
5.4 AS Interface 132
5.4.1 The bus system 132
5.4.2 Features 132
5.4.3 Bus structure and technology 133
5.4.4 Commissioning of the AS Interface 134
5.4.5 Technical data for AS interface 137
5.4.6 Certificate 138
6 PARAMETERISATION 139
6.1 Parameterisation of frequency inverter SK 200E 140
6.1.1 Operating displays 142
6.1.2 Basic parameters (Frequency inverter) 144
6.1.3 Motor data / characteristic curve parameters 150
6.1.4 Control parameters 156
6.1.5 Control terminals 159
6.1.6 Additional parameters 176
6.1.7 Positioning 188
6.1.8 Information (Frequency inverter) 189
6.2 Parameterisation of I/O - extension SK xU4-IOE- 198
6.2.1 Basic parameters (I/O - extension) 198
6.2.2 Information (I/O - extension) 200
6.3 Parameter overview, User settings 202
6.3.1 Overview of frequency inverter parameters 202
6.3.2 Parameter overview, I/O extension 215
7 OPERATING STATUS MESSAGES 216
7.1 SimpleBox display 217
7.2 Table of possible error messages 217
7.2.1 Table of possible frequency inverter error messages 217
7.2.2 Table of possible error messages in the I/O extension module 224
7.3 Table of possible warning messages 225
7.4 Table of possible reasons for the operating status "Switch-on block". 227
8 TECHNICAL DATA 228
8.1 General data Frequency inverter series SK 200E 228
8.2 General data for mains/setpoint modules 229
8.3 Electrical data for frequency inverter 230
8.3.1 Electrical data 1~115V 231
8.3.2 Electrical data 1~230V 232
8.3.3 Electrical data 3~230V 233
8.3.4 Electrical data 3~400V 235
8.3.5 Electrical data for UL certification 237
9 ADDITIONAL INFORMATION 240
9.1 Setpoint processing in the SK200E 240
9.2 Process controller 241
9.2.1 Process controller application example 241
9.2.2 Process controller parameter settings 242
9.3 Electromagnetic compatibility 243
9.4 EMC limit value classes 244
9.5 Reduced output power 245
9.5.1 Increased heat dissipation due to pulse frequency 245
9.5.2 Reduced overcurrent due to time 246
9.5.3 Reduced overcurrent due to output frequency 247
9.5.4 Reduced output current due to mains voltage 248
9.5.5 Reduced output current due to the heat sink temperature 248
9.6 Operation with FI circuit breakers 249
9.7 System bus 249
9.8 Energy efficiency 251
9.9 Motor data - characteristic curves 252
9.9.1 50 Hz characteristic curve 252
9.9.2 87 Hz characteristic curve (only 400 V devices) 254
9.9.3 100Hz characteristic curve (only 400V devices) 255
9.10 Standardisation of setpoint/actual values 256
9.11 Maintenance and servicing information 257
9.12 Abbreviations in this Manual 258
10 KEYWORD INDEX 259

1 General information

The NORDAC SK 200E is based on the tried and tested NORD platform. These devices feature a compact design with optimum control characteristics.

These devices are provided with sensorless vector current control which in combination with asynchronous three-phase motor types constantly ensures an optimised voltage-to-frequency ratio. This has the following significance for the drive: Peak start-up and overload torques at constant speed.
This series of devices can be adapted to individual requirements by means of extension modules.
Due to the numerous setting options, these inverters are capable of operating all three-phase motors. The power range is from 0.25 kW to 7.5 kW with an integrated mains filter.
This manual is based on the device software V1.2 R0 (see P707) of the SK 200E. If the frequency inverter used has a different version, this may lead to some differences. If necessary, you can download the current manual from the Internet (http://www.nord.com/).
For the SK 215E/225E/235E there are additional descriptions for functional safety (BU 0230), the integrated AS interface (BU 0200, Section 5.4) and the positioning system (BU 0210). These contain all the necessary additional information for start-up.
If a bus system is used for communication, a corresponding description (e.g. BU 0220 für PROFIBUS DP) is provided, or this can be downloaded from the Internet (http://www.nord.com/).

Typically, this series of devices is installed directly on a three-phase asynchronous motor. Alternatively, there are optional accessories for mounting the devices in the vicinity of the motor, e.g. on a wall or the frame of a machine.

In the simplest configuration, even without an EEPROM, there is the possibility of setting all important parameters via two potentiometers and eight DIP switches. LEDs are provided for the diagnosis of the operating status. The use of a control module is therefore not absolutely necessary.
In order to gain access to all parameters, the internal RS232 PC interface (RJ12) can be used, or an optional SimpleBox or ParameterBox may be used. In this case, the parameter settings which have been changed by the operator are stored in the plug-in EEPROM. The EEPROM must then always remain plugged in during operation.

For changes to the frequency inverter software V 1.2 RO , the structure of individual parameters has been changed for technical reasons.

ATTENTION	(E.g.: up to version V 1.1 R2, (P417) was a simple parameter. As of version V 1.2. R0 this has been divided into two arrays ((P417) [-01] and [-02]))
	When plugging an EEPROM from a frequency inverter with an earlier software version into a frequency inverter with a software version higher than V 1.2, the stored data is automatically adapted to the new format. the new parameters are saved in the default settings. Correct functioning is therefore ensured.
	However, it is not permissible to plug an EEPROM with a software version higher than V 1.2 into a frequency inverter with a lower software version, as this may lead to a complete loss of data.

1.1 Overview

Features of the basic device SK 205E:

- High starting torque and precise motor speed control setting with sensorless current vector control
- Can be installed directly on, or near to the motor.
- Permissible ambient temperature range $-25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (refer to the technical data)
- Integrated EMC mains filter for limit curve A Category C2 or C3 (not for 115 V devices)
- Automatic measurement of the stator resistance for precise determination of motor data
- Programmable direct current braking
- External 24 V supply voltage
- Integrated brake chopper for 4 quadrant operation, optional brake resistors (internal/external)
- $4 x$ digital inputs (DIN1-4), $1 x$ digital output (DO1), temperature sensor input (TF+/TF-)
- Evaluation of an incremental encoder possible via digital inputs
- NORD System bus for connection of additional modules
- Electromagnetic brake control (MB+/MB-)
- Four separate online switchable parameter sets
- $2 x$ potentiometers and $8 x$ DIP switches for minimal configuration
- LEDs for diagnosis
- RS232/RS485 interface via RJ12 plug
- Plug-in EEPROM data storage
- Integrated PosiCon positioning control (Manual BU 0210)
- CANopen absolute value encoder via the NORD System bus

Additional features of the SK 215E compared with the SK 205E:

- Integrated Safe Pulse Block (Manual BU 0230)
- However, only 3 free digital inputs available

Additional features of the SK 225E compared with the SK 205E:

- AS1, integrated AS interface (4I/4O)

Additional features of the SK 235E compared with the SK 205E:

- Integrated Safe Pulse Block (Manual BU 0230)
- However, only 3 digital inputs
- AS1, integrated AS interface (4I/4O)

NOTE: The features of the particular basic devices are different for the series SK 205E/215E/225E/235E. These differences will be pointed out in the course of this description, Section 2.8.1.

1.2 Delivery

Check the equipment immediately after delivery/unpacking for transport damage such as deformation or loose parts.
If there is any damage, contact the carrier immediately and carry out a thorough assessment.

Important! This also applies even if the packaging is undamaged.

1.3 Scope of supply

Standard version: IP55 (optionally IP66)
Integrated brake chopper
Integrated EMC mains filter for limit curve A Category C2 or C3
(not for 115 V devices)
Operating instructions as pdf file on CD ROM
including NORD CON, PC parameterisation software

Available accessories: Braking resistor, required for energy feedback Section 2.3
Matching RJ12 to SUB-D9 adapter cable to connection to a PC
SK CSX-3H, SimpleBox, 4-digit 7-segment LED display
SK PAR-3H, ParameterBox, plain text LCD display

Expansion module:
internal SK CU4-IOE, internal I/O extension
SK CU4-PBR, internal Profibus module
SK CU4-CAO, internal CANopen module
SK CU4-DEV, internal DeviceNet module
SK CU4-24V-123-B, internal 24V mains unit 1~ 230 V
SK CU4-24V-140-B, internal 24V mains unit 1~400V
SK CU4-POT, potentiometer adapter: internal potentiometer/switch module
external SK TU4-IOE, external I/O extension
SK TU4-PBR, external Profibus module
SK TU4-CAO, external CANopen module
SK TU4-DEV, external DeviceNet module
SK TU4-24V-123-B, external 24V mains unit 1~230V
SK TU4-24V-140-B, external 24 V mains unit 1~400V
SK TU4-POT-123-B, external 24 V and potentiometer/switch module 1~230V
SK TU4-POT-140-B, external 24V and potentiometer/switch module 1~400V
SK TI4-TU-BUS or NET, connection unit TU4
SK TIE4-WMK-TU, wall-mounting kit TU4

NOTE: Details for the use of the relevant bus systems can be found in the applicable supplementary bus manual.
$>$ www.nord.com <

1.4 Safety and installation information

NORDAC SK 200E frequency inverters are devices for use in industrial high voltage systems and are operated at voltages that could lead to severe injuries or death if they are touched.

- Installation and other work may only be carried out by qualified electricians and with the device disconnected from mains. The operating instructions must always be available to these persons and must be strictly observed.
- Local regulations for the installation of electrical equipment and accident prevention must be complied with.
- The equipment continues to carry hazardous voltages for up to 5 minutes after being switched off at the mains.
- For single phase operation (115/230V) the mains impedance must be at least $100 \mu \mathrm{H}$ for each conductor. If this is not the case, a mains choke must be installed.
- For safe isolation from the mains, all poles of the supply cable to the frequency inverter must be able to be disconnected.
- Even during motor standstill (e.g. caused by an electronic block, blocked drive or output terminal short circuit), the line connection terminals, motor terminals and braking resistor terminals may still conduct hazardous voltages. A motor standstill is not identical to electrical isolation from the mains.
- Warning, with certain settings, the frequency inverter/motor can start up automatically after the mains are switched on.
- The frequency inverter is only intended for permanent connection and may not be operated without effective earthing connections which comply with the local regulations for large leakage currents
(> 3.5mA). VDE 0160 stipulates the installation of a second earthing conductor or an earthing conductor cross-section of at least $10 \mathrm{~mm}^{2}$.
- Normal FI-circuit breakers are not suitable as the sole protection for three-phase frequency inverters if the local regulations do not permit a possible DC proportion in the fault current. According to EN 50178 / VDE 0160, the FI circuit breaker must be an allcurrent sensitive FI circuit breaker (type B).
- In normal use, NORDAC SK 200E frequency inverters are maintenance free. The cooling surfaces must be regularly cleaned with compressed air if the ambient air is dusty.

CAUTION

The heat sink and all other metal components can heat up to temperatures above $70^{\circ} \mathrm{C}$.
When mounting, sufficient distance from neighbouring components must be maintained. When working on the components, allow sufficient cooling time beforehand

Protection against accidental contact may need to be provided.

ATTENTION | The frequency inverter can carry voltages for up to 5 minutes after being switched off at the |
| :--- |
| mains. Inverter terminals, motor cables and motor terminals may carry voltage! |

Touching open or free terminals, cables and equipment components can lead to severe injury
or death!

Work may only be carried out by qualified specialist electricians and with the electrical supply
Do the equipment disconnected!

CAUTION Children and the general public must be kept away from the equipment!
The equipment may only be used for the purpose intended by the manufacturer. Unauthorised modifications and the use of spare parts and additional equipment which has not been purchased from or recommended by the manufacturer of the device may cause fire, electric shock and injury.
Keep these operating instructions in an accessible location and give them to all operators!

WARNING

This product intended for use in an industrial environment and is subject to sales restrictions according to IEC 61800-3. In a domestic environment, this product can cause high frequency interference, in which case the user may be required to take appropriate measures.

An appropriate measure would be the inclusion of a recommended mains filter.

1.5 Certifications

1.5.1 European EMC Directive

If the NORDAC SK 200E is installed according to the recommendations in this instruction manual, it meets all EMC Directive, requirements, as per the EMC product standard for motor-operated systems EN 61800-3. (see also c ϵ Section 9.3, Electromagnetic Compatibility [EMC].)

1.5.2 Approval for UL and cUL

UL Approval - File No. E171342
 "Suitable For Use On A Circuit Capable Of Delivering Not More Than 100000 rms Symmetrical Amperes, 120 Volts maximum (SK 2xxE-xxx-112), 240 Volts maximum (SK $2 x x E-x x x-323$) or 500 Volts maximum (SK $2 x x E-x x x-340$) and when protected by RK5 class or faster fuses as indicated."

Suitable for use with mains with a maximum short circuit current of 100,000A rms (symmetrical), 120V maximum (SK 2xxE-xxx112), 240V maximum (SK 2xxE-xxx323), or 500 V maximum (SK 2xxE-xxx340), and with protection with a Class RK5 or faster fuse as described in Section 8.3.5.
"Suitable For Use On A Circuit Capable Of Delivering Not More Than 10000 rms Symmetrical Amperes, 120 Volts maximum (SK $2 x x E-x x x-112$), 240 Volts maximum (SK $2 x x E-x x x-323$) or 500 Volts maximum (SK $2 x x E-x x x-340$) and when protected by Circuit Breaker (inverse time trip type) in accordance with UL 489", current and voltage ratings according to instruction manual."

Suitable for use with mains with a maximum short circuit current of $10,000 \mathrm{~A}$ rms (symmetrical), 120 V maximum (SK 2xxE-xxx112), 240V maximum (SK 2xxE-xxx323), or 500 V maximum (SK $2 x x E-x x x 340$) and with protection via a UL Category DIVQ circuit breaker (thermal and electromagnetic trigger) in accordance with UL 489. For current and voltage ratings, please refer to Section 8.3.5.
NORDAC SK 200E frequency inverters include protection against motor overload. Further technical details can be found in Section 8.3.5.

cUL Approval - File No. E171342

"cUL only in combination with SK CIF-340-30 or SK CIF-340-60 for 380-500V models and SK CIF-323-20 or SK CIF-323-40 for 3 phase 200-240V rated models". The recognized transient surge suppression filter board has to be connected between supply and the input of the drive according to the instruction manual.
Remarks:

- cUL approval for 110-120V models provided without filter board"
cUL compliant, only in combination with SK CIF-340-30 orr SK CIF-340-60 for 380-500V types and SK CIF-323-20 or SK CIF-323-40 for 200-240V types. The appropriate voltage limitation filter (SK CIF xxx xx) must be connected between the power input and the frequency inverter (input) according to the instructions for use.
Remarks:
- cUL conformity applies for 100-120V types without voltage limitation filter
"Suitable For Use On A Circuit Capable Of Delivering Not More Than 5000 rms Symmetrical Amperes, 120 Volts maximum (SK 2xxE-xxx-112), 240 Volts maximum (SK $2 x x E-x x x-323$) or 500 Volts maximum (SK $2 x x E-x x x-340$) and when protected by RK5 class or faster fuses as indicated."

Suitable for use with mains with a maximum short circuit current of 5,000A rms (symmetrical), 120V maximum (SK 2xxE-xxx112), 240V maximum (SK 2xxE-xxx323), or 500V maximum (SK 2xxE-xxx340), and with protection with a Class RK5 or faster fuse as described in Section 8.3.5.
"Suitable For Use On A Circuit Capable Of Delivering Not More Than 5000 rms Symmetrical Amperes, 120 Volts maximum (SK 2xxE-xxx-112), 240 Volts maximum (SK $2 x x E-x x x-323$) or 500 Volts maximum (SK $2 x x E-x x x-340$) and when protected by Circuit Breaker (inverse time trip type) in accordance with UL 489", current and voltage ratings according to instruction manual."

Suitable for use with mains with a maximum short circuit current of 5,000A (symmetrical), 120 V maximum (SK 2xxE-xxx112), 240 V maximum (SK 2xxE-xxx323), or 500V maximum (SK $2 x x E-x x x 340$) and with protection via a UL Category DIVQ circuit breaker (thermal and electromagnetic trigger) in accordance with UL 489. For current and voltage ratings, please refer to Section 8.3.5.
NORDAC SK 200E frequency inverters include protection against motor overload. Further technical details can be found in Section 8.3.5.

1.5.3 C-Tick labelling

NORD SK 200E series frequency inverters fulfil all the relevant regulations in Australia in New Zealand.

1.5.4 RoHS compliance

SK 200E series frequency inverters are designed to be RoHS compliant according to Directive 2002/95/EU.

1.6 Nomenclature / type codes

Unique type codes have been defined for the individual modules and devices. These provide individual details of the device type and its electrical data, protection class, fixing version and special versions. A differentiation is made according to the following groups:

Group	Example of type code
Frequency inverter - basic device	SK 205E-550-323-A (-C)
Adapter unit - frequency inverter	SK TI4-1-205-1 (-C-WMK-1)
Connection unit - Technology Unit	SK TI4-TU-BUS (-C-WMK-TU)
Optional modules	SK TU4-CAO (-C-M12)
Extension modules	SK TIE4-M12-CAO

1.6.1 Type codes / Frequency inverter - basic device

SK 205E-370-323-A (-C)

(...) Options, only implemented if required.

1.6.2 Type codes / Adapter unit - frequency inverter

SK TI4-1-205-1 (-C-WMK-1)

 Wall mounting kit: $-1=\mathrm{SI}+\mathrm{II},-2=\mathrm{S}$ III
 IP protection class: Standard = IP55, C = "coated" IP66
 Mains connection: 1 = 1~115/230V*, 3 = 3~ 230/400V*
 205 = SK 205E, 215 = SK 215E,
 225 = SK 225E, 235 = SK 235E
 Size: 1 = S I, 2 = S II, 3 = S III
 Device series: SK TI4 = Adapter unit SK TI4

*) The voltage depends on the frequency inverter used; please also refer to the technical data.
(...) Options, only implemented if required.

1.6.3 Type codes / Adapter unit - Technology Unit

SK TI4-TU-BUS (-C-WMK-TU)

 Wall mounting kit: $-1=\mathrm{S} \mathrm{I}+\mathrm{II},-2=\mathrm{S}$ III
 IP protection class: Standard = IP55, C = "coated" IP66
 Suitable device types: NET = optional net module (e.g. TU4-24V-...) BUS = optional bus module (e.g. CANopen: TU4-CAO)
 Group: TU = Technology unit
 Device series: SK TI4 = Adapter unit SK TI4

(...) Options, only implemented if required.

1.6.4 Type codes / Optional modules

For bus module or I/O extension

(...) Options, only implemented if required.

For mains unit or potentiometer modules "PotentiometerBox"

```
SK TU4-24V-123-B (-C)
    |] [J IP protection class: Standard = IP55, C = "coated" IP66
    Radio interference filter: B = Class B1
    Mains connection: 123 = 1~ 230V*, 140 = 1~ 400V*
    Option type: 24V = 24V mains unit, POT = potentiometer/switch module
    TU4 = external Technology Unit,
    CU4 = internal Customer Unit
```

*) The voltage depends on the frequency inverter used; please also refer to the technical data.
(...) Options, only implemented if required.

1.7 Version with protection class IP55 / IP66

NORDAC SK 200E frequency inverters and the additional modules are available in all sizes and in the protection classes IP55 (standard) or IP66 (optional).
Protection class IP66 must always be stated when ordering!
There are no restrictions or differences to the scope of functions in either protection class. In order to differentiate the protection classes, modules with protection class IP66 are given an extra "-C" (coated \rightarrow coated PCBs) in their type designation.

> e.g. SK 205E-750-340-A-C

IP55 version:

The IP55 version of the SK 200E is the standard version. Both versions (motor-mounted, mounted on the motor or wall-mounted on a wall bracket) are available. In addition, all adapter units, technology units and customer units are available for this version.

IP66 version:

In contrast to the IP55 version the IP66 version is a modified option. Both variants (motor-integrated, close to motor) are also available. The modules available for the IP66 version (adapter units, technology units and customer units) have the same functionalities as the corresponding modules for the IP55 version.

The modules for the IP66 design are identified by an additional "-C" and are modified according to the following special measures listed below.

Special measures:

Impregnated PCBs, painted housing
Diaphragm valve for pressure compensation on temperature changes.
Low pressure test
\rightarrow A free M12 screw connection is required for low pressure testing. After successful testing, a diaphragm valve is inserted here. This screw connection is therefore no longer available for a cable gland.
If the frequency inverter is to be retro-fitted, i.e. the drive unit (inverter mounted on the motor) is not completely obtained from NORD, the membrane valve is supplied in the bag supplied with the frequency inverter. The valve must be correctly fitted on site by the plant constructor (Note: the valve must be mounted as high as possible, in order to avoid contact with standing moisture (e.g.: standing moisture due to condensation).

For all versions, care must be taken that the cable and the cable gland are carefully matched. This is the only way to ensure permanent compliance with the required protection class.

2 Assembly and installation

2.1 Installation and assembly

NORDAC SK 200E frequency inverters are available in various sizes depending on their output. Connection of the SK 200E to the motor or the wall-mounting unit is made by means of the suitable size of connection unit SK TI4-... The frequency inverter is mounted by means of integrated plug contacts.
The devices require adequate ventilation to protect against overheating. For further details, please refer to Section 8 "Technical Data".

Motor-mounted version: Here, the ventilation of the motor is integrated into the cooling concept of the FI. Mounting must therefore always be carried out as shown in the illustration. For permanently low motor speeds and self-ventilated motors, a reduction in power similar to the wall-mounted version must be taken into account.

Wall-mounted version: In continuous operation (S1), mounting away from the motor causes a reduction in the power of the FI by one power level. This means that relative to the motor, the FI must be selected one power level larger.

NOTE

For further details of the power reduction and the possible ambient temperatures, please refer to the technical data in Section 7.

2.1.1 Mounting the adapter unit

For the supply of a complete drive unit (gear unit + motor + frequency inverter) the SK 200E frequency inverter and the SK TI4-... adapter unit are always completely assembled and tested. The adapter unit can also be ordered separately for subsequent mounting on an existing motor or to replace a different motormounted frequency inverter.

NOTE

The IP66 compliant SK 200E must be mounted by NORD as special measures must be implemented. IP66 components retrofitted on site cannot ensure that this protection class is guaranteed.

The "Adapter unit SK TI4" includes the following components:

- Cast housing, seal (already glued in) and insulation plate
- Power terminal block, corresponding mains connection
- Control terminal block, corresponding SK 200E version
- Screw kit, for mounting on the motor and the terminal bars
- Pre-fabricated cable for motor and PTC connections

Procedures:

1. If necessary, remove the original terminal box from the NORD motor, so that only the base of the terminal box and the terminal strip remain.
2. Set the bridges for the correct motor circuit and connect the pre-fabricated cables for motor and PTC connections to the respective connection points on the motor.
3. Mount the cast housing on the terminal box base using the existing screws and seal. Position the cast housing with the dome facing the A-side of the motor (looking towards the A bearing cover). Check the adaptability for different motor manufacturers.
4. Attach the insulating plate above the terminal strip. Screw on the power terminal block above this using the $2 \mathrm{M} 4 \times 8$ screws and the plastic washers.
5. Connect the motor cables $\mathrm{U}, \mathrm{V}, \mathrm{W}$ to the power terminal block and the PTC cable TF+, TF- to the control terminal block 38, 39.

2.1.2 Adapters for Different Motors

In some cases, the terminal box attachments are different for different sizes of motor. Therefore, it may be necessary to use an adapter to mount the frequency inverter.

In order to guarantee the maximum protection class IP55 / IP66 of the entire unit, motor must also have a corresponding protection class.
For NORD motors, as of size 80, the adapter unit can be directly mounted on the motor as standard. For motors larger than sizes 63-71 it is necessary to use an additional adapter plate and seal. Also, for certain device configurations with motor sizes 80-112 it may be necessary to use an adapter plate and seal.

NORD motor sizes	Mounting of SK 200E S I	Mounting of SK 200E S II	Mounting of SK 200E S III
Size $63-71$	Mounting with adapter kit I	not possible	not possible
Size $80-112$	direct mounting	direct mounting	Mounting with adapter kit II
Size 132	not possible	not possible	direct mounting

Overview of adapter kits

Name	Mounting of SK 200E S I	Part No.	
Adapter Kit I	Mounting with adapter plate, size 63-71	011015410	
	Additional terminal box frame seal	013097000	
Adapter Kit II	Mounting with adapter plate, size 80 - 112	013035490	
	Additional terminal box frame seal	013097060	

Important!
The adaptability of motors from other manufacturers must be checked in individual cases!

2.1.3 Installation of the SK 200E

In order to carry out the electrical connection of the SK 200E, this may need to be removed from the connection unit. To do this, remove the 4 fastening screws, so that the frequency inverter can be lifted off vertically.
After the electrical connection of the power cables has been made, the frequency inverter can be replaced. This must be carried out in a vertical direction relative to the connection unit without tilting. The PE cinch plug can be used in order to ensure correct guidance.

In order to achieve the maximum protection class IP55/IP66, care must be taken that all frequency inverter fixing screws are gradually tightened diametrically oppositely, with the torques stated in the table below.
For the cable gland of the connecting cable, appropriate screwed connections for cable crosssection must be used.
Dissipation of heat generated by the inverter occurs by means of convection. This is assisted by the airflow of the motor. Because of this, a reduction in power for unventilated motors or wall-mounted devices must be taken into account (for further details see Section 8, Technical Data).
Heat dissipation must not be hindered by severe contamination.

Frequency inverter size	Screw size	Tightening torque
Size I	$\mathrm{M} 5 \times 45$	$3.5 \mathrm{Nm} \pm 20 \%$
Size II	$\mathrm{M} 5 \times 45$	$3.5 \mathrm{Nm} \pm 20 \%$
Size III	$\mathrm{M} 5 \times 45$	$3.5 \mathrm{Nm} \pm 20 \%$

2.1.4 Optional locations for the "SK TI4-..." adapter unit

Top view

The drawing above shows the various mounting locations for the optional modules. Option location 1 is used for the mounting of an internal bus module or internal mains unit. Option location 2 can be used to mount an internal braking resistor. External bus modules, 24 V mains units or potentiometer modules can be mounted at option location 3L or 3R. The same apples for external braking resistors. Option locations 4 and 5 are for the mounting of M12 sockets or plugs. Locations 6, 7 and 8 require additional extensions from M12 to M16 in order for M12 sockets and plugs to be mounted. Of course, only one option can be mounted at a single option location. The preferred location for M12 sockets or plugs should be 4L or 4R.

2.2 Dimensions: SK 200E

2.2.1 Power rating / Motor size

Size	Mains/power matching: SK 200E			
	1~110-120V	1~200-240V	3~200-240V	3~380-480V
Size I	$0.25 \ldots 0.37 \mathrm{~kW}$	$0.25 \ldots 0.55 \mathrm{~kW}$	0.37 ... 1.1kW	0.55 ... 2.2kW
Size II	$0.55 \ldots 0.75 \mathrm{~kW}$	0.75 ... 1.1kW	1.5 ... 2.2 kW	3.0 ... 4.0kW
Size III	-	-	3.0 ... 4.0kW	5.5 ... 7.5kW

2.2.2 SK 200E mounted on motor

Size		Housing dimensions SK 200E / Motor					Weight: SK 200E without motor Approx. [kg]
FI	Motor	$\varnothing \mathrm{g}$	g 1	n	0	p	
Size I	Size 71 *	145	201	236	214	156	3.0
	Size 80	165	195		236		
	Size 90 S / L	183	200		251/276		
	Size 100	201	209		306		
Size II	Size 80	165	202	266	236	176	4.1
	Size 90 S / L	183	207		$251 / 276$		
	Size 100	201	218		306		
	Size 112	228	228		326		
Size III	Size 100	201	251	330	306	218	6.9
	Size 112	228	261		326		
	Size 132 S / M	266	262		373/411		
All dimensions in [mm] *) including additional adapter and seal (11015410, 13097000)							

2.2.3 SK 200E Wall-mounting

Device type Size	Housing dimensions			Wall mounting SK TIE4-WMK-1/-2			Total weight Approx. [kg]
	g2	n	p	d	e	\varnothing	
Size I \rightarrow SK TIE4-WMK-1 Part No. 275274000	130.5	236	156	180	64	5.5	3.1
Size II \rightarrow SK TIE4-WMK-1 Part No. 275274000	137.5	266	176				4.2
Size III \rightarrow SK TIE4-WMK-2 Part No. 275274001	154.5	330	218	210.5	74	5.5	7.0
	All dimensions in [mm]						

2.3 Brake resistor (BR)

During dynamic braking (frequency reduction) of a three phase motor, electrical energy is returned to the frequency inverter. In order to avoid switch-off of the FI due to excess voltage and internal or external braking resistor can be used. With this, the integrated brake chopper (electronic switch) pulses the link circuit voltage (switching threshold approx. 420V/720V DC, according to the mains voltage) into the braking resistor. Here the excess energy is converted into heat.

The braking resistance and all other metal components can heat up to temperatures above $70^{\circ} \mathrm{C}$.

When mounting, sufficient distance from neighbouring components must be maintained. When working on the components, allow sufficient cooling time beforehand

2.3.1 Internal brake resistor SK BRI4-...

The internal brake resistor can be used if only slight, short braking phases are to be expected.

[^0]
2.3.2 External brake resistor SK BRE4-...

The external brake resistor is intended for the feedback of energy, such as occurs in cyclical drives or lifting equipment. Here, it may be necessary to plan for the exact brake resistor required.

For installation, an M20 screw connection with an adapter for M25 are supplied. The connecting wires for the brake resistor are fed through this into the connection unit.

The brake resistor is attached to the side of the connection unit using 4 suitable M4 $\times 10$ screws.

2.3.3 External brake resistor dimensions

Resistor type	Size	A	B	C	Fixing dimensions		
					d	e	\varnothing
SK BRE4-1-100-100 SK BRE4-1-200-100 SK BRE4-1-400-100	Size I	150	178	61	83	32	4.3
SK BRE4-2-100-200 SK BRE4-2-200-200	Size II	255	178	61	83	32	4.3
All dimensions in mm							

2.3.4 Brake resistor, electrical data

Internal

Brake resistor size	Resistor type	Resistance	Max. continuous output / limit**	Energy consumption*	Connecting cable or terminals
Size I	SK BRI4-1-100-100 Part No. 275272005	100Ω	100 W / 20\%	1.0 kWs	Silicon flex $2 \times 0.75 \mathrm{~mm}^{2}$ approx. 275mm
	SK BRI4-1-200-100 Part No. 275272008	200Ω	100 W / 20\%	1.0 kWs	
	SK BRI4-1-400-100 Part No. 275272012	400Ω	100 W / 20\%	1.0 kWs	
Size II	SK BRI4-2-100-200 Part No. 275991115	100Ω	200 W / 20\%	2.0 kWs	Silicon flex $2 \times 1.0 \mathrm{~mm}^{2}$ approx. 275mm
	SK BRI4-2-200-200 Part No. 275272108	200Ω	200 W / 20\%	2.0 kWs	
	*)Maximum once within 10s** **In order to prevent impermissible heating of the connection unit, the continuous power is limited to $1 / 5$ of the BR rated power. This also has a limiting effect on the power consumption.				

External

Brake resistor size	Resistor type	Resistance	Max. power	continuous	Energy consumption*	Connecting cable or terminals
	SK BRE4-1-100-100 Part No. 275273005	100Ω	100 W		2.2 kWs	FEP flex
Size I	SK BRE4-1-200-100 Part No. 275273008	200Ω	100 W		2.2 kWs	AWG 14/19
$\stackrel{\cong}{\pi}$	SK BRE4-1-400-100 Part No. 275273012	400Ω	100 W		2.2 kWs	approx. 350 mm
Size II	SK BRE4-2-100-200 Part No. 275273105	100Ω	200 W		4.4 kWs	$\begin{aligned} & \text { FEP flex } \\ & 2 \times 1.9 \mathrm{~mm}^{2} \end{aligned}$
	SK BRE4-2-200-200 Part No. 275273108	200Ω	200 W		4.4 kWs	AWG 14/19 approx. 500 mm
	*)Maximum once within 120s					

2.4 Voltage limitation filter SK CIF

2.4.1 General information

Modules SK CIF-323-20, SK CIF-323-40, SK CIF-340-30 and SK CIF-340-60 are voltage limitation filters corresponding to CSA 22.2 No. 14-5 / UL508C Section 48 for the reduction of a 5 kV surge impulse (rising flank $1,2 \mu \mathrm{~s} /$ falling flank $50 \mu \mathrm{~s}$) to a maximum of 300% of the amplitude of the rated voltage (230 Vac for SK CIF 323-20/40 and 3x400Vac/460Vac/480Vac/500Vac for SK CIF-340-30/60).
The modules SK CIF-323-x0 may only be used in combination with a suitable mains choke

ATTENTION | (Lmin $=3 \times 0,73 \mathrm{mH})($ see connection plan). |
| :--- |
| With SK CIF-340-x0 modules, the use of a mains choke is not essential, but is recommended. |
| Note |
| With the use of a mains choke, the effective input currents of the frequency inverter are reduced to |
| approximately the values of the output currents. Several frequency inverters may be connected to a |
| choke - filter combination. In this case, the sum of the input currents must not exceed the rated |
| current of the filter. |

2.4.2 Type code

2.4.3 Installation

The modules are suitable for installation on a snap-on mounting rail, however, with the aid of plug-on fixing elements they may also be screwed directly to a plane surface (e.g. the rear wall of a switching cabinet). In all cases, the modules must be installed in a switching cabinet.

Type	Dimensions L x W x D [mm]
SK CIF-323-20 / 40	$180.5(204.5) \times 126(126) \times 76.5(62.5)$ (Wall-mounted)
SK CIF-340-30 / 60	$180,5(204.5) \times 126(126) \times 71(57)$ (Wall-mounted)

Fixing dimensions - wall-mounting $77.5 \mathrm{~mm} \times 192.5 \mathrm{~mm}$

2.4.4 Connection plan

For the use of a single phase 230 V frequency inverter (SK $2 \times x \mathrm{E}-\mathrm{XXX}$-123-...) both $\mathrm{L} 1 \mathrm{and} \mathrm{L} 2 / \mathrm{N}$
must be equipped with a choke. A 2-phase ($L_{\text {min }}=2 \times 0,73 \mathrm{mH}$) or a 3-phase input choke
$\left(L_{\min }=3 \times 0,73 \mathrm{mH}\right)$ can be used.
The connection of the frequency inverter and the choke to the filter is made via terminals L1 and
L2/N.

2.4.5 Technical data

	SK CIF-323-20	SK CIF-323-40
Mains phases	$1 / 3 \mathrm{AC}$	
Mains voltage	$1 / 3 \sim 200 \ldots 240 \mathrm{~V}, \pm 10 \%, 47 \ldots 63 \mathrm{~Hz}$	
Input/Output current	max. 20 A	max. 40 A
Max. mains fuse	$25 \mathrm{~A}^{*}$	$60 \mathrm{~A}^{*}$
Ambient temperature	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$	
Tightening torque for screw terminals	$0.5 \ldots 0.6 \mathrm{Nm}$	2.5 Nm
Connection facility (flexible)	$0.2 \ldots 4 \mathrm{~mm}^{2}$	$0.5 \ldots 25 \mathrm{~mm}^{2}$
Protection class	IP20	
Weight	0.61 kg	0.74 kg

*Class, type and size of the fuse according to the connected frequency inverters (Section 8.3.5)

	SK CIF-340-30	SK CIF-340-60
Mains phases	3 AC	
Mains voltage	$3 \sim 380 \mathrm{~V}-20 \% \ldots 500 \mathrm{~V}+10 \%, 47 \ldots 63 \mathrm{~Hz}$	
Input/Output current	max. 30 A	max. 60 A
Max. mains fuse	$100 \mathrm{~A}^{*}$	$100 \mathrm{~A}^{*}$
Ambient temperature	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$	
Tightening torque for screw terminals	$0.5 \ldots 0.6 \mathrm{Nm}$	2.5 Nm
Connection facility (flexible)	$0.2 \ldots 4 \mathrm{~mm}^{2}$	$0.5 \ldots 25 \mathrm{~mm}^{2}$
Protection class	IP20	
Weight	0.57 kg	0.71 kg

*Class, type and size of the fuse according to the connected frequency inverters (Section 8.3.5)

2.5 Wiring guidelines

The frequency inverter has been developed for use in an industrial environment. In this environment, high levels of electromagnetic interference can influence the frequency inverter. In general, correct installation ensures safe and problem-free operation. To meet the limiting values of the EMC directives, the following instructions should be complied with.
(1) Ensure that all equipment in the control cabinet or field is securely earthed using short earthing cables which have large cross-sections and are connected to a common earthing point or earthing rail. It is especially important that all control devices connected to the frequency inverters (e.g. an automation device) are connected to the same earthing point as the inverter itself, using a short cable with large cross-section. Flat conductors (e.g. metal clamps) are preferable, as they have a lower impedance at high frequencies.
(2) The bonding cable of the motor controlled by the frequency inverter should be connected directly to the earthing terminal of the associated frequency inverter. The presence of a central earthing bar in the control cabinet and the grouping together of all bonding conductors to this bar normally ensures safe operation. (See also Section 9.3 / 9.4 (EMC))
(3) Where possible, shielded cables should be used for control circuits. The shielding at the cable end should be carefully sealed and it must be ensured that the wires are not laid over longer distances without shielding.
The shields of analog setpoint cables should only be earthed on one side on the frequency inverter.
(4) The control cables should be installed as far as possible from power cables, using separate cable ducts, etc. Where cables cross, an angle of 90° should be ensured as far as possible.
(5) Ensure that the contactors and brake chokes in the cabinet are interference protected, either by RC circuits in the case of AC contactors, or by "free-wheeling" diodes for DC contactors, whereby the interference protectors must be positioned on the contactor coils. Varistors for over-voltage limitation are also effective. This interference suppression is particularly important when the contactors are controlled by the relay in the frequency inverter.
(6) Use screened or armoured cable for the load connections (motor cable) and earth the screening/armour at both ends, if possible to the frequency inverter bonding.
In addition, an EMC-compliant cabling must be ensured. (See also Section 9.3 / 9.4 (EMC)).

The safety regulations must be complied with under all circumstances when installing the frequency inverter!

ATTENTION

With the use of a ParameterBox SK PAR-3H this must never be simultaneously connected to the frequency inverter and the PC, as potential shifts may cause damage, especially to the PC. (See also Manual BU0040)

2.6 Electrical Connection

THE DEVICES MUST BE EARTHED.
Safe operation of the devices requires that is installed and commissioned by qualified personnel in compliance with the instructions provided in this Manual.

In particular, the general and regional installation and safety regulations for work on high voltage systems (e.g. VDE) must be complied with as must the regulations concerning correct use of tools and the use of personal protection equipment.
Dangerous voltages can be present at the motor connection terminals even when the inverter is switched off. Always use insulated screwdrivers on these terminal fields.
Ensure that the input voltage source is not live before setting up or changing connections to the unit.
Make sure that the inverter and motor are specified for the correct supply voltage.

In order to access the electrical connections, the SK 200E must be removed from the SK TI4 connection unit. Proceed as follows:

1. Switch off the mains supply and if necessary check and observe the waiting period.
2. Loosen the 4 Allen screws (4 mm).
3. Carefully lift the FI vertically off the connection unit.
4. The electrical connections and the option slots are now freely accessible.

To replace the FI, proceed in the opposite sequence:
5. Here, special care must be taken that the PE pins are correctly contacted.
These are located diagonally in 2 corners of the FI and the connection unit.
6. The FI can only be placed on the SK T14 in one orientation.
7. Evenly tighten the Allen screws in a cross-wise direction.

2.7 Electrical connection of the power unit

All connection terminals are located in the connection unit of the frequency inverter.

One terminal block is provided for the power connections and one for the control connections.

The earthing connections (device earthing) are located on the base in the cast housing of the connection unit.

Before and while the device is connected, the following must be observed:

1. Ensure that the mains supply provides the correct voltage and is suitable for the current required (see Section 8 Technical Data).
2. Ensure that suitable circuit breakers with the specified nominal current range are installed between the voltage source and the inverter.
3. Connect the mains voltage directly to the terminals
$L_{1}-L_{2} / N-L_{3}$ und PE (according to the device).
4. To connect the motor, three flexible wires U-V-W should be used when mounting the motor.
5. For wall-mounting a 4-conductor shielded motor cable (recommended) to the terminals U-V-W and earth should be used. In this case the cable shielding should be connected to a large area of the metallic screw connector.

NOTE: if certain wiring sleeves are used, the maximum connection cross-section can be reduced.
Screwdriver: Use a 5.5 mm slot-head screwdriver to connect the power unit.

NOTE: If synchronous machines or several motors are connected in parallel to a device, the frequency inverter must be switched over to linear voltage/frequency characteristic curves, \rightarrow $\mathrm{P} 211=0$ and P212 $=0$.

NOTE: Only use copper cables with min. $75^{\circ} \mathrm{C}$ or $75^{\circ} \mathrm{C} / 80^{\circ} \mathrm{C}$ or equivalent for connection. Higher temperature classes are permissible.

NOTE: The use of shielded cables is essential in order to maintain the specified radio interference suppression level. (See also Section 9.4 EMC limit value classes)

ATTENTION: This device produces high frequency interference, which may make additional suppression measures necessary in domestic environments. (Details in Section. 9.3 / 9.4 (EMC))

2.7.1 Mains connections (X1-L1, L2, L3, EARTH)

No special safety measures are required on the mains input side of the frequency inverter. It is advisable to use normal mains fuses (see technical data) and a main switch or circuit breaker.
115 V devices may only be used with a $110 \ldots 120 \mathrm{~V}(\mathrm{~L} / \mathrm{N}=\mathrm{L} 1 / \mathrm{L} 2)$ single phase supply.
$\mathbf{2 3 0 V}$ devices may be ordered either for single phase (...-123-, L/N = L1/L2) or three phase (...-323-, L1/L2/L3) operation. It is essential to note the type designation!
400 V devices are designed for three phase mains voltage $380 . . .480 \mathrm{~V}$ (L1/L2/L3).
For the exact specification, please refer to the technical data in Section 8.

Connection to the bonding is by means of screw terminals in the cast housing of the connection unit:

Connection cross-section:

$0.5 \ldots 6 \mathrm{~mm}^{2}$ rigid/ flexible cable AWG 20-10
For looping of the mains voltage, up to a cable cross-section of $2 \times 2.5 \mathrm{~mm}^{2}$ double wire end sleeves must be used.

Tightening torque:

$1.2 \ldots 1.5 \mathrm{Nm}$

Operation on an IT network

The use of this frequency inverter on an IT network is possible after modifications by means of jumpers. Further details in Section 2.7.4, 2.7.5-2.7.6.

The operation of a frequency inverter in an IT network is only permissible if a brake resistor is connected, in order to prevent impermissible charging of the inverter link circuit in case of a mains fault (short-circuit to earth). The prerequisite for the control of the brake resistor is the presence of a 24 V control voltage. Therefore, in case of an external (24VDC) frequency inverter control voltage supply, it is essential that this is always switched on ahead of the mains voltage or is switched off after disconnection from the mains.

For the operation of the frequency inverter on an IT network, the mains voltage may only be connected to the frequency inverter if the control voltage (24 V supply) is available to the frequency inverter. Otherwise there is a danger of destruction of the frequency inverter in case of a mains fault (short-circuit to earth).

2.7.2 Motor cable (X2 - U, V, W, earth)

The motor cable may have a total length of up to $\mathbf{1 0 0 m}$ if this is a standard cable. If a screened motor cable is used, or if the cable is laid in a well earthed metal conduit, the total length should not exceed 20m.

Note: Please also note Section 9.4 EMC limit value classes.

Note: For multiple motor use the total cable length consists of the sum of the individual cable lengths.

Connection cross-section:

$0.5 \ldots 6 \mathrm{~mm}^{2}$ rigid/flexible cable AWG 20-10

Tightening torque:

1.2 ... 1.5Nm

2.7.3 Brake resistor connection ($\mathrm{X} 2-+\mathrm{B},-\mathrm{B}$)

Terminals $+B /-B$ are intended for the connection of a suitable braking resistor. The connection should be as short as possible.

Note: The large amount of heat produced by the brake resistor must be taken into account.

Connection cross-section:
$0.5 \ldots 6 \mathrm{~mm}^{2}$ rigid/ flexible cable AWG 20-10

Tightening torque:
1.2 ... 1.5Nm

2.7.4 Electro-mechanical brake

An output voltage is generated by the frequency inverter on terminals 79 / 80 (MB+ / MB-) of the control terminal block for the control of an electromechanical brake (See also Section 2.8.1 and 2.8.2). This depends on the supply voltage of the frequency inverter. The assignment is as follows:

Mains voltage / Alternating current (AC)	Brake coil voltage (DC)
$115 \mathrm{~V} \sim$	$105 \mathrm{~V}=$
$230 \mathrm{~V} \sim$	$105 \mathrm{~V}=$
$400 \mathrm{~V} \sim$	$180 \mathrm{~V}=$
$460 \mathrm{~V} \sim$	$205 \mathrm{~V}=$
$480 \mathrm{~V} \sim$	$205 \mathrm{~V}=$

The assignment of the correct brake or brake coil voltage must be taken into account for the design related to the mains voltage of the frequency inverter.

2.7.5 Mains supply jumpers

These jumpers are used to adapt the SK 200E to various forms of mains supply (e.g. IT network). As supplied, a star configuration earthed mains supply must be used, with an earth conductor for single phase devices.
To adapt the SK 200E to an IT network, the capacitors Cy must be disconnected from earth. This is carried out by changing a jumper position as shown in the diagram.
Here it must be noted that the specified degree of radio interference suppression changes. Further details can be found in Section 9.3 EMC.

2.7.6 Internal jumper wiring

As supplied, the jumpers are set in the "normal position" ($\mathrm{CY}=\mathrm{ON}$). With this, the mains filter has its normal effect and results in a higher leakage current.

2.8 Electrical connection of SK 200E control unit

The control terminals are located on the inside of the frequency inverter connection unit. The connections differ according to the version (SK 205E, 215E, 225E, 235E).

Connection terminals: Screw terminals, 3.5 mm slot-head screwdriver

Connection cross-section: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$, AWG 24-14, rigid or flexible, without wire end sleeves

Tightening torque:

Control cable:

Control voltages,

External:
$18 \ldots 30 \mathrm{~V}$, min. 200 mA , the current load increases according to the level of equipment.
Used to supply the FI control unit and connected options.

NOTE

GND is a common reference potential for analogue and digital inputs.
The labelling of the control terminal bar differs according to the SK 200E version.

2.8.1 Control terminals, SK 2x5E versions

LABELLING, FUNCTION

SH: "Safe stop" function'
AS: Integrated AS interface
24V: External 24 V power supply
GND: Reference potential for digital signals
DIN: Digital input ${ }^{*}$
DO: Digital output ${ }^{*}$

24V SH: "Safe stop" input"
GND SH: "Safe stop" reference potential"
SYS+/-: System bus
$\mathrm{MB}+/-$: \quad Electromagnetic brake control (105V, 180V, 205V)
TF+/-: Motor PTC connection

CONNECTIONS AND FUNCTIONS DEPENDING ON THE SK 200E VERSION

	Fl type	SK 205E	SK 215E (SH)	SK 225E (AS1)	SK 235E (SH + AS1)
Pin	Labelling				
1	44	24 V , external 24 V FI supply*			
2	44/84	24V, external 24 V FI supply		AS+, AS- Interface	
3	40	GND, reference potential for digital signals			
4	40/85	GND		AS- Interface	
5	21	DIN1 / digital input 1			
6	22	DIN2 / digital input 2			
7	23	DIN3, digital input 3			
8	$24 / 89$	DIN4, digital input 4	24 V SH, "Safe stop"	DIN4, digital input 4	24 V SH, "Safe stop"'
9	40/88	GND	GND SH	GND	GND SH
10	1	DO 1, digital output 1			
11	40	GND			
12	77	SYS+, system bus			
13	78	SYS-, system bus			
14	-	---			
15	79	$\mathrm{MB}+$, electromagnetic brake control			
16	80	MB-, electromagnetic brake control			
17	38	TF+, motor PTC connection			
18	39	TF-, motor PTC connection			

*With the use of the AS interface, terminal 44 provides an output voltage (24 V , max. 60 mA). In this case, no voltage sources may be connected to this terminal!

2.8.2 Details of the SK 2×5 E control connections

Control voltage 24 V external! Terminal 44 . If the frequency inverter does not have an optional internal mains unit, it must be provided with an external 24 V supply.
For devices in which the AS interface is used (SK 225E and SK 235E) the control voltage supply must be via the yellow AS interface cable. However, in this case, the frequency inverter must not be additionally supplied via terminal 44, in order to prevent damage to the mains unit or the AS-I bus.

Terminal/ Name	Function \{Factory setting\}	Data			Description / wiring suggestion		Parameter		
77 SYS+	System bus	Up to four SK 200E can be operated on a system bus. Address $=32 / 34 / 36 / 38$			Internal FI system bus for communication with optional modules and other frequency inverters. For further details see Section 9.7		$\begin{aligned} & \text { P509/510 } \\ & \text { P514/515 } \end{aligned}$		
78 SYS-	System bus								
79 MB+	Brake control	Voltage: Mains brake $115 / 230 \mathrm{~V}$ $105 \mathrm{~V}=$ $400 \mathrm{~V} \sim$ $180 \mathrm{~V}=$ $460 / 480 \mathrm{~V} \sim$ $205 \mathrm{~V}=$ Current:max. 0.5A			To control an electro-mechanical brake, the frequency inverter generates an output voltage at the terminals MB+/MB-. This depends on the supply voltage to the SK 200E. It is essential to take the correct brake coil voltage into account in the selection. (NOTE: this function is identical to P434=1)				
					P107,				
80 MB-	Brake control				P505				
Additionally for SK 215E and SK 235E									
89 24V SH	24 V input for the "Safe stop" function	18 ... 30V at least $120-150 \mathrm{~mA}$					Fail-safe input		
88 GND SH	Reference potential for the "Safe stop" function	OV digital Reference potential					-		
Additionally for SK 225E and SK 235E									
84 AS+	Actuator/ Sensor Interface	Simple setting by means of DIP switch 4 and 5 on the SK 200E			For the control of the SK 200E via the simple field bus level. Here, only the yellow AS interface cable can be used. An additional feed via the black cable is not possible.				$\begin{aligned} & \text { P480 } \\ & \ldots \text {... P483 } \end{aligned}$
85 AS-									
M12 optional	AS interface data:								
	Supply of AS interface connection, PWR connection (yellow cable)		26.5 - 31.6V, max. 290mA			Connector PWR M12$\begin{aligned} & 1 \text { AS-I (+) } \\ & 2 \text { n.c. } \\ & 3 \text { AS-I (-) } \\ & 4 \text { n.c. } \\ & 5 \text { n.c. } \end{aligned}$			

Terminal/ Name	Function \{Factory setting\}	Data	Description / wiring suggestion	Parameter
all SK 200E, connector block RJ12, RS485/RS232				
1 RS 485 A	Data cable RS485	Baud rate 9600...38400Baud The termination resistor $\mathrm{R}=120 \Omega$ must be installed on the final participant by the customer.	\square	$\begin{aligned} & \text { P502 } \\ & \text {...P513 } \end{aligned}$
2 RS 485 B				
3 GND	Reference potential for Bus signals	OV digital		
4232 TXD	Data cable RS232	Baud rate 9600...38400Baud	$\begin{aligned} & \text { RJ12: Pin No. } 1 \ldots 6 \\ & \text { 1: RS485_A } \\ & \text { 2: RS485_B } \\ & \text { 3: GND } \\ & \text { 4: RS232_TxD } \\ & \text { 5: RS232_RxD } \\ & \text { 6: +24V } \end{aligned}$	
5232 RXD				
$6+24 \mathrm{~V}$	24 V supply voltage from the FI	$24 \mathrm{~V} \pm 20 \%$		
All SK 200E, cable accessories				
optional	Adapter cable RJ12 to SUB-D9 ... for direct connection to a PC with NORD CON software	Length 3 m RS 232 connections (RxD, TxD, GND) Part No. 278910240	Pin2: RS232_TxD Pin3: RS232_RxD Pin5: GND	

2.8.3 Colour and contact assignments for incremental encoders (HTL)

Function	Wire colours, for incremental encoder	Assignment for SK 2x5E
24 V supply	brown / green	$\mathbf{4 4}$ 24V (VO)
OV supply	white / green	$\mathbf{4 0}$ 0V (GND)
Track A	brown	$\mathbf{2 2}$ DIN2
Track A inverse (A /)	green	--
Track B	grey	$\mathbf{2 3}$ DIN3
Track B inverse (B /)	pink	--
Track 0	red	--
Track 0 inverse	black	--
The cable shield	should be connected to a wide area of the frequency inverter housing	

Only the digital inputs DIN2 and DIN 3 of the frequency inverter are able to process the signals from an HTL encoder.

ATTENTION

When using DIN2 and DIN3 as rotary encoder evaluation, it is essential to set the functions of the digital inputs DIN2 and DIN3 (Parameter (P420 [-02, -03])) to "No Function". (For using the DIP-switches of the frequency inverter for parametrisation, please lock at section 5.1.2 .)

NOTE:
The data sheet accompanying the encoder should be observed.

RECOMMENDATION: For good reliability, especially with long connecting cables, an incremental encoder for $10-30 \mathrm{~V}$ supply voltage should be used. Either an external or the internal 24 V voltage can be used for the supply. 5 V encoders should not be used! With the use of a type SK-xU4-24V... mains unit, the power restriction of the mains unit should be noted (Encoder current consumption: up to 150 mA).
The direction of rotation of the incremental encoder must correspond to that of the motor.
Therefore, according to the direction of rotation of the encoder relative to the motor (this may
be inverted) a positive or negative pulse number must be set in parameter (P301).

2.9 ATEX Zone 22 for SK 2x5E

General information

With appropriate modification, the NORDAC SK 2×5 E frequency inverter can be used in explosion hazard areas. For this it is important that all the safety information in the operating instructions is strictly complied with for the prevention of personal injury and material damage. This is essential to prevent injury and damage.

Qualified personnel

Qualified personnel must be used to carry out work involving the transport, assembly, installation, commissioning and maintenance. Qualified personnel are persons who due to their training, experience and instruction, and their knowledge of the relevant standards, accident prevention regulations and operating conditions are authorised to carry out the necessary activities for starting up the frequency inverter. This also includes knowledge of first aid measures and the local emergency services.

ATTENTION

All work must only be carried out with the power to the system switched off.
If the frequency inverter is connected to a motor and a gear unit, the EX labelling of the motor and the gear unit must also be observed.

Safety information

The increased danger in areas with inflammable dust demands the strict observation of the general safety and commissioning information. The drive unit must comply with the specifications in Planning Guideline No. 6052101. Explosive concentrations of dust may cause explosions if ignited by hot or sparking objects. Such explosions may cause serious or fatal injuries to persons or severe material damage.

It is essential that the person responsible for the use of motors and frequency inverters in explosion hazard areas is trained in their correct use.

ATTENTION | Before opening the frequency inverter for the connection of electric cables or other work, the |
| :--- |
| mains voltage must always be switched off and secured against switching on again! |
| Temperatures may occur within the frequency inverter and the motor, which are higher than |
| the maximum permissible surface temperature of the housing. The frequency inverter may |
| therefore not be opened or removed from the motor in an atmosphere of explosive dust! |
| Impermissibly heavy dust deposits must not be permitted, as these impair the cooling of the |
| frequency inverter! |
| All cable glands which are not used, must be closed with blind screw plugs which are |
| approved for explosion hazard areas. |
| Only the original seals may be used. |
| The protective film covering the diagnostic LEDs in TU4 modules must not be damaged. |
| It must be ensured that the plastic housing cover cannot be electrostatically charged by |
| streams of particles caused by the fan. |

Repairs may only be carried out by Getriebebau NORD.

2.9.1 Modified SK $2 \times 5 \mathrm{E}$ for compliance with Category 3D

For the operation of an SK 2×5 E in ATEX Zone 22 only a modified frequency inverter is permissible. This adaptation is only made at the NORD factory. In order to use the frequency inverter in ATEX Zone 22, the standard cable glands are replaced with ATEX-approved brass cable glands, and the diagnostic connections are replaced with connections made from aluminium / glass and other seals. The housing cover is also coated with a UV-resistant paint.

Series SK 2×5 E frequency inverters and the associated options are only designed for a degree of mechanical hazard corresponding to a low impact energy of 4J.

The frequency inverter must not be exposed to direct sunlight.

2.9.2 Options for ATEX Zone 22 3D

In order to ensure an ATEX-compliant NORDAC SK 2×5 E frequency inverter, the approval of optional modules for explosion hazard areas must be observed. The following lists the various options with regard to their approval for use in ATEX Zone 22 3D.

2.9.2.1 Technology Units for ATEX Zone 22 3D

Name	Part Number	Approved for ATEX Zone 22 3D	Not approved for ATEX Zone 22 3D
SK TI4-TU-BUS(-C)	$275280000 /(275280500)$	X	
SK TI4-TU-NET(-C)	$275280100 /(275280600)$	X	
SK TU4-PBR(-C)	$275281100 /(275281150)$	X	
SK TU4-CAO(-C)	$275281101 /(275281151)$	X	
SK TU4-DEV(-C)	$275281102 /(275281152)$	X	
SK TU4-IOE(-C)	$275281106 /(275281156)$	X	X
SK TU4-24V-123-B(-C)	$275281108 /(275281158)$	X	X
SK TU4-24V-140-B(-C)	$275281109 /(275281159)$	X	X
SK TU4-POT-123-B(-C)	$275281110 /(275281160)$		X
SK TU4-POT-140-B(-C)	$275281111 /(275281161)$		X
SK TU4-PBR-M12(-C)	$275281200 /(275281250)$		
SK TU4-CAO-M12(-C)	$275281201 /(275281251)$		
SK TU4-DEV-M12(-C)	$275281202 /(275281252)$		
SK TU4-IOE-M12(-C)	$275281206 /(275281206)$		

2.9.2.2 Customer Units for ATEX Zone 22 3D

Name	Part Number	Approved for ATEX Zone 22 3D	Not approved for ATEX Zone 22 3D
SK CU4-PBR	275271000	X	
SK CU4-CAO	275271001	X	
SK CU4-DEV	275271002	x	
SK CU4-IOE	275271006	x	
SK CU4-POT	275271207		X
SK CU4-24V-123-B	275271108	x	
SK CU4-24V-140-B	275271109	x	
SK ATX-POT	275142000	X	

The SK 2x5E for Category 3D can be equipped with an ATEX-compliant potentiometer, which can be used to adjust a setpoint (e.g. speed) on the device. The potentiometer is used with an M20-M25 extension in one of the M25 cable glands. The selected setpoint can be adjusted with a screwdriver. Due to the removable screw closing cap, this component complies with ATEX requirements. Permanent operation may only

Wire colours on the potentiometer	Name	Terminal CU4-24V	Terminal CU4-IOE
Red	+10 V reference	$[11]$	$[11]$
Black	AGND / 0V	$[12]$	$[12]$
Green	Analog input	$[14]$	$[14] /[16]$

NOTE: For the use of a potentiometer with frequency inverter SK 2x5E a Customer Unit CU4-24V-xxx-B or CU4-IOE is necessary.

2.9.2.3 Hand-held Technology Units for ATEX Zone 22 3D

All hand-held technology units are not approved for continuous use in the ATEX Zone 22 3D. The may therefore only be used during commissioning or for maintenance purposes, if it is ensured that no explosive dust atmosphere exists.

Name	Part Number	Approved for ATEX Zone 22 3D	Not approved for ATEX Zone 22 3D
SK CSX-3H	275281013		X
SK PAR-3H	275281014		X

The diagnostic opening of the basic unit for the connection of a hand-held technology unit or a PC must not be opened in an atmosphere containing explosive dust.

2.9.2.4 Braking resistors

External braking resistors of type SK BRE4-x-xxx-xxx are not permitted for use in the ATEX Zone 22 3D.

Name	Part Number	Approved for ATEX Zone 22 3D	Not approved for ATEX Zone 22 3D
SK BRI4-1-100-100	275272005	X	
SK BRI4-1-200-100	275272008	X	
SK BRI4-1-400-100	275272012	x	
SK BRI4-2-100-200	275272105	x	
SK BRI4-2-200-200	275272108	x	
SK BRE4-1-100-100	275273005		\mathbf{x}
SK BRE4-1-200-100	275273008		\mathbf{x}
SK BRE4-1-400-100	275273012		\mathbf{x}
SK BRE4-2-100-200	275273105		\mathbf{x}
SK BRE4-2-200-200	275273108		

ATTENTION

If an internal braking resistor of type SK BRI4-x-xxx-xxx is used, the power limitation for this must be activated under all circumstances. This is usually done by setting DIP switch 8 to "ON". Alternatively, parameters (P555), (P556) and (P557) can be parameterised with the appropriate values. Only the resistors assigned to the relevant inverter type may be used.

2.9.2.5 Other options

M12 sockets and plugs for installation in the terminal box of the basic device or in technology units may only be used of they are approved for use in ATEX Zone 22 3D.

Name	Part Number	Approved for ATEX Zone 22 3D	Not approved for ATEX Zone 22 3D
SK TIE4-WMK-1	275274000	\mathbf{X}	
SK TIE4-WMK-2	275274001	\mathbf{X}	
SK TIE4-WMK-TU	275274002	\mathbf{x}	
SK TIE4-HAN10E	275274100		\mathbf{x}
SK TIE4-HANQ5	275274110		\mathbf{x}
SK TIE4-SWITCH	275274610		\mathbf{x}
SK TIE4-M12-M16	275274510		\mathbf{x}
SK TIE4-M12-PBR	275274500		\mathbf{x}
SK TIE4-M12-CAO	275274501		\mathbf{x}
SK TIE4-M12-AS1	275274502		\mathbf{x}
SK TIE4-M12-INI	275274503		\mathbf{x}
SK TIE4-M12-IOL	275274504		
SK TIE4-M12-SYSM	275274505		
SK TIE4-M12-SYSS	275274506		
SK TIE4-M12-POW	275274507		

2.9.3 Maximum output voltage and torque reduction

As the maximum output voltage depends on the pulse frequency to be set, in some cases the torque which is stated in Planning Guideline 6052101 must be reduced for values above the rated pulse frequency of 6 kHz .

$$
\text { For } \mathrm{F}_{\text {pulse }}>6 \mathrm{kHz}: \quad \mathrm{T}_{\text {reduction }}[\%]=1 \% *\left(\mathrm{~F}_{\text {pulse }}-6 \mathrm{kHz}\right)
$$

Therefore the maximum torque must be reduced by 1% for each kHz pulse frequency above 6 kHz . The torque limitation must be taken into account on reaching the break frequency. The same applies for the degree of modulation (P218). With the factory setting of 100%, in the field reduction range a torque reduction must be taken into account:

$$
\text { For P218 > 100\%: } \quad \mathrm{T}_{\text {reduction }}[\%]=1 \% \text { * }(105-\mathrm{P} 218)
$$

Above a value of 105%, no reduction needs to be taken into account. However, with values above 105\% no increase in torque above that of the Planning Guideline will be achieved. Under certain circumstances, degrees of modulation $>100 \%$ may lead to oscillations and motor vibration due to increased harmonics.

At pulse frequencies above $6 \mathrm{kHz}(400 / 500 \mathrm{~V}$ devices) or 8 kHz (230V) devices, the reduction in power must be taken into account for the design of the drive unit.
If parameter (P218) is set to $<105 \%$, the derating of the degree of modulation must be taken into account in the field reduction range.

2.9.4 Commissioning information

For Zone 22 the cable glands must at least comply with protection class IP 55. Unused openings must be closed with blank screw caps suitable for ATEX Zone 22 3D (minimum protection class IP 55).
The motors are protected against overheating by means of the frequency inverter. This is carried out by the evaluation of the motor PTC by the frequency inverter. In order to ensure this function, the PTC must be connected to the intended input (Terminal 38/39 control terminal plug connector). In addition, care must be taken that a NORD motor from the motor list (P200) is set. If a standard 4-pole NORD motor or a motor from a different manufacturer is not used, the data for the motor parameters ((P201) to (P208)) must be adjusted to those on the motor rating plate. In addition, the frequency inverter must be parameterised so that the motor can be operated with a maximum speed of $3000{ }^{1} / \mathrm{min}$. For a four-pole motor, the "maximum frequency" must be set to a value which is smaller or equal to $100 \mathrm{~Hz}((\mathrm{P} 105) \leq 100)$. Here the maximum permissible output speed of the gear unit must be observed. In addition, the monitoring "I2t-Motor" (Parameter (P535) / (P533)) must be switched on and the pulse frequency set to between 4 kHz and 6 kHz .

Overview of the necessary parameter settings:

Parameter	Setting value	Factory setting	Description
P105 Maximum frequency	$\leq 100 \mathrm{~Hz}$	$[50]$	This value relates to a 4-pole motor. On principle, the value must only be so large that a motor speed of 3000 rpm is not exceeded.
P200 Motor list	Select the appropriate motor power	$[0]$	If a 4-pole NORD motor is used, the preset motor data can be called up.
P201 - P208 Motor data	Data according to rating plate	$[\mathrm{xxx}]$	If a 4-pole NORD motor is not used, the motor data on the rating plate must be entered here.
P218 Degree modulation	$\geq 100 \%$	$[100]$	Determines the maximum possible output voltage
P504 Pulse frequency	$4 \mathrm{kHz} \ldots 6 \mathrm{kHz}$	$[6]$	For pulse frequencies above 6kHz a reduction of the maximum torque is necessary.
P533 Factor I2t motor	$<100 \%$	A reduction in torque can be taken into account with values less than 100 in the I²t monitoring.	
P535	[0]	The I2t- monitoring of the motor must be switched on. The set values depend on the type of ventilation and the motor used. See Planning Guideline No.: 605 2101	

2.9.5 EC declaration of conformity

Getriebebau NORD GmbH \& Co. KG
Rudolf-Diesel-Str 1, D-22941 Bargteheide, Germany
Telefon: +49 (0) 4532-401-0 Telefax: +49 (0) 4532-401-555 hitp://www.nord.com

Declaration of EC-Conformity

in the sense of the directive 94/9/EC annex VIII

Getriebebau Nord GmbH \& Co. KG berewith declares that the inverters of the product range

- SK 205E-xxx, SK 215E-xxx, SK 225E-xix, SK 235E-xII and the options

> - SK TU4-PBR-ェ, SK TU4-CAO-x, SK TU4-DEV-I, SK TU4-IOE-I, SK TU4-24V-זxx, SK TI4-TU-xIx -
in optionnl ATEX-design are according with the following regulation-

Directive on
equipment and protective systems
for use in explosive atmospheres

Equipment marking in IP55 construction: (non-conductive dust)
Equipment marking in IP66 construction: (conductive dust)

94/9/EC

II 3D ExtD A22 IP66 T125 ${ }^{\circ} \mathrm{C}$ X

Applied Standards:
EN 61241-0:2007 Electrical apparatus for use in the presence of combustible dust - Part 0:
General requirements
EN 61241-1:2005
Electrical apparatus for use in the presence of combustible dust-Part 1;
Protection by enclosures " $\tau \mathrm{D}$ "
Degrees of protection provided by enclosures (IP code)
First CE marking started in 10.
Bargteheide, Janaary 25, 2010.

[^1]

[^2]
2.10 Outdoor installation

Under the following conditions, series SK 200E frequency inverters and technology units may be installed outdoors:

- IP66 version (See Special Measures, Section .1.7)
- UV-resistant blank screw caps. and inspection windows.

The UV-resistant blank screw caps and inspection windows are part of the ATEX Kit for the SK 200E. I.e. for the use of the ATEX option for IP66 (Section 2.9) all conditions for the outdoor installation of the frequency inverter are complied with.
The membrane valve (bag enclosed with the IP66 version of the frequency
inverter connection unit) enables the compensation of pressure differences
between the inside of the frequency inverter and its environment and also
prevents the entry of moisture. When fitting into an M12 screw connection of the
connection unit of the frequency inverter, care must be taken that the
membrane valve does not come into contact with standing moisture.
\qquad
NOTE

If older versions of the devices are to be installed outdoors, replacement of the housing cover with a UV-resistant version may be necessary.

3 Options

A series of optional extension modules are available for the SK 200E. These modules are preferably used for the production of the low voltage (24 V control voltage) for the direct control or connection of the frequency inverter to a host field bus.
The options are available both as an internal version for integration (into the FI), the so-called customer unit SK CU4SK CU4-... or as an external version, the so-called technology unit SK TU4-... The differences between the internal and external options are merely limited to the number of additional IOs and the permissible current load of the connection terminals.
The Customer Unit (SK CU4-...) is integrated into the SK 200E. The electrical connection to the SK 200E is made via the internal system bus. This is equipped with screw terminals for connection to external peripherals. As an option, there is also the possibility of using 4/5-pin M12 plug connectors in the Fl housing.
A special case is the potentiometer adapter SK CU4-POT, which is mounted on the connection unit of the frequency inverter and requires the use of an SK xU4-24V-...mains unit or an SK xU4-IOE IO module.

The technology unit (Technology Unit, SK TU4-...) is externally attached to the frequency inverter and is therefore easy to access. The electrical connection to the SK 200E is made via the internal system bus. External $4 / 5$-pin plug connectors are available for use by the customer. A technology unit requires the use of a suitable SK TI4-TU-... connection unit. The optional wall mounting kit SK TIE4-WMK-TU also allows the technology units to be mounted close to the inverter.

SK TI4-... with integrated SK CU4-...

SK 200E with external SK TU4-...

An SK 200E frequency inverter is able to manage the following options via its system bus:

- $1 \times$ CANopen absolute encoder and
- $1 \times$ ParameterBox SK PAR-3H and (via an RJ12 connector)
- $1 \times$ Field bus option (e.g. Profibus DP), internally or externally and
- $2 \times \mathrm{I} / \mathrm{O}$ extensions (SK xU4-IOE-...), internally and / or externally
(Fl firmware V1.2 R0 or higher, otherwise only 1x)
Up to 4 frequency inverters with their appropriate options can belong to a field bus.

[^3]
3.1 Overview of optional modules

3.1.1 Overview of internal customer units SK CU4-...

Internal customer units enable expansion of the range of functions of SK 200E frequency inverters without changing the physical size. Either a field bus module, a mains unit or an I/O extension can be selected. The frequency inverter provides one slot for the fitting of an appropriate option. External options (technology units) are available for additionally required optional modules (Section 3.1.2).
The bus modules require an external 24 V supply, and are therefore also ready for operation if the frequency inverter is not connected to the mains supply.

Module	Description	Data
Profibus module SK CU4-PBR Part No. 275271000	This option enables the connection of up to four SK 200E to Profibus DP	Baud rate: 12 MBaud Protocol: DP-V1 2x digital inputs Low: 0-5V, High: 11-30V System bus
CANopen module SK CU4-CAO Part No. 275271001	This option enables the connection of up to four SK 200E to CANbus, using the CANopen protocol.	Baud rate: up to 1 MBit/s Protocol: DS301 / DSP402 $2 x$ digital inputs Low: 0-5V, High: 11-30V System bus
DeviceNet module SK CU4-DEV Part No. 275271002	This option enables the connection of up to four SK 200E to DeviceNet.	Baud rate: 500 KBit/s Protocol: AC-Drive $2 x$ digital inputs Low: 0-5V, High: 11-30V System bus
I/O extension SK CU4-IOE Part No. 275271006	This internal I/O extension provides further digital and analog inputs and outputs. These are then available in addition to the digital inputs provided in the SK 200E (Section 3.4.3).	$2 x$ digital inputs Low: 0-5V, High: 11-30V $2 x$ analog inputs $0-10 \mathrm{~V},-10-10 \mathrm{~V}, 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ 1x analog output $0-10 \mathrm{~V},-10-10 \mathrm{~V}, 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ System bus
Potentiometer/Switch SK CU4-POT Part No. 275271207	Internal potentiometer/switch This can only be used in connection with a 24 V mains unit (SK CU4-24V, SK TU4-24V) or I/O extension (SK CU4-IOE, SK TU4-IOE).	ON R / OFF / ON L $0 . .100 \%$ setpoint potentiometer $10 \mathrm{k} \Omega$
Int. 24V mains unit 1~230V SK CU4-24V-123-B Part No. 275271108	Internal 24 V mains unit for the SK 200E, for mains voltage of $1 \sim 100-240 \mathrm{~V}, \pm 10 \%$.	$\begin{aligned} & 24 \mathrm{~V}=, \pm 10 \%, 420 \mathrm{~mA} \\ & 10 \mathrm{~V} \text { ref., } \pm 0.2 \mathrm{~V}, 5 \mathrm{~mA} \end{aligned}$
Int. 24V mains unit 1~400V SK CU4-24V-140-B Part No. 275271109	Internal 24 V mains unit for the SK 200E, for mains voltage 1~ 380-500V, -20/+10\%.	Analog input 0-10V 500Ω burden resistor for evaluation of $0 / 4-20 \mathrm{~mA}$

For all modules except SK CU4-POT: Screw terminals, $16 \times 2.5 \mathrm{~mm}^{2}$, AWG 26-14

3.1.2 Overview of external technology units SK TU4-...

External Technology Units enable the expansion of the scope of functions of SK 200E frequency inverters. Users have access to both communication modules and mains units or an I/O extension.

Modules with connection terminals or M12 system connectors are available as options.
According to the installation location, modules with protection class IP55 or IP66 are available. These can be installed directly on the SK 200E or independent of the SK 200E with an appropriate wall-mounting kit.

Each SK TU4-... Technology Unit requires a SK TI4-TU-... Connection Unit. The SK TI4-TU-BUS is available for bus modules or the l/O extension. The mains unit or potentiometer modules require an SK TI4-TU-NET Connection Unit.

For the bus modules or I/O extension with integrated system bus an RJ12 socket (behind a transparent screw-on cover) is also available. This enables communication with other modules or frequency inverters. With this linkage, all devices can be parameterised by means of a ParameterBox SK PAR-3H or with a PC and the NORD CON software.
The bus modules require an external 24 V supply, and are therefore also ready for operation if the frequency inverter is not connected to the mains supply.

Bus modules

Bus Module	Description	Data
Profibus module* SK TU4-PBR Part No. 275281100 (IP55) Part No. 275281150 (IP66)	This option enables the control of up to four SK 200E via Profibus DP.	Protocol: DP-V1 Baud rate: 12 MBaud $4 x$ digital inputs Low: 0-5V, High: 11-30V $2 x$ digital outputs, $0 / 24 \mathrm{~V}$ system bus
Profibus module with M12* SK TU4-PBR-M12 Part No. 275281200 (IP55) Part No. 275281250 (IP66)	This option enables the control of up to four SK 200E via Profibus DP.	As SK TU4-PBR, but with 6x M12 sockets
CANopen module* SK TU4-CAO Part No. 275281101 (IP55) Part No. 275281151 (IP66)	This option enables the control of up to four SK 200E via the CANbus, using the CANopen protocol.	Protocol: DS301 / DS402 Baud rate: up to $1 \mathrm{MBit} / \mathrm{s}$ $4 x$ digital inputs Low: 0-5V, High: 11-30V $2 x$ digital outputs, $0 / 24 \mathrm{~V}$ system bus
CANopen module with M12* SK TU4-CAO-M12 Part No. 275281201 (IP55) Part No. 275281251 (IP66)	This option enables the control of up to four SK 200E via the CANbus, using the CANopen protocol.	As SK TU4-CAO, but with 6x M12 sockets
DeviceNet module* SK TU4-DEV Part No. 275281102 (IP55) Part No. 275281152 (IP66)	This option enables the control of up to four SK 200E via DeviceNet.	Protocol: AC-Drive Baud rate: $500 \mathrm{KBit} / \mathrm{s}$ $4 x$ digital inputs Low: 0-5V, High: 11-30V $2 x$ digital outputs, $0 / 24 \mathrm{~V}$ system bus
DeviceNet module with M12* SK TU4-DEV-M12 Part No. 275281202 (IP55) Part No. 275281252 (IP66)	This option enables the control of up to four SK 200E via DeviceNet.	As SK TU4-DEV, but with 6x M12 sockets
I/O extension* SK TU4-IOE Part No. 275281106 (IP55) Part No. 275281156 (IP66)	This option extends the SK 200E with additional digital and analog inputs and outputs.	$4 x$ digital inputs Low: 0-5V, High: 11-30V $2 x$ analog inputs $0-10 \mathrm{~V},-10-10 \mathrm{~V}, 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ 1x analog output $0-10 \mathrm{~V},-10-10 \mathrm{~V}, 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ $2 x$ digital outputs, $0 / 24 \mathrm{~V}$ system bus
I/O extension with M12* SK TU4-IOE-M12 Part No. 275281206 (IP55) Part No. 275281256 (IP66)	This option extends the SK 200E with additional digital and analog inputs and outputs.	As SK TU4-IOE, but with 6x M12 sockets
Connection Unit TU4 SK TI4-TU-BUS Part No. 275280000 (IP55) Part No. 275280500 (IP66)	The Connection Unit is always required in order to use an external Technology Unit. It implements the mechanical and electrical connection of the TU4 to the SK 200E or the wall mounting kit.	$36 \times 2.5 \mathrm{~mm}^{2}$ AWG 24-14 Spring-loaded terminals
TU4 Wall-mounting kit SK TIE4-WMK-TU Part No. 275274002	Using the wall mounting kit, a Technology Unit can be used/installed separately from the SK 200E.	

*) In order to use the TU4 modules, a suitable SK T14-TU-BUS Connection Unit must always be available.

Mains Unit modules

Mains Unit Module	Description	Data
External 24 V mains unit 1~230V ** SK TU4-24V-123-B Part No. 275281108 (IP55) Part No. 275281158 (IP66)	External 24 V mains unit to supply the SK 200E, using a mains voltage of 230 V	$24 \mathrm{~V}, \pm 10 \%, 420 \mathrm{~mA}$ 10 V ref., $\pm 0.2 \mathrm{~V}, 5 \mathrm{~mA}$ Analog input 0-10V
External 24 V mains unit 1~400V ** SK TU4-24V-140-B Part No. 275281109 (IP55) Part No. 275281159 (IP66)	External 24 V mains unit to supply the SK 200E, using a mains voltage of 400 V	500Ω burden resistor for evaluation of $0 / 4-20 \mathrm{~mA}$ Supply: 230 or 400 V
External 24V 1~230V, potentiometer / switch ** SK TU4-POT-123-B Part No. 275281110 (IP55) Part No. 275281160 (IP66)	The Potentiometer Box is used for the direct control of the frequency inverter, without the use of external components. The 24 V mains unit supplies the SK 200E, using a mains voltage of 230 V .	$24 \mathrm{~V}, \pm 10 \%, 420 \mathrm{~mA}$ ON R / OFF, ON L
External 24V 1~ 400V, potentiometer / switch ** SK TU4-POT-140-B Part No. 275281111 (IP55) Part No. 275281161 (IP66)	The Potentiometer Box is used for the direct control of the frequency inverter, without the use of external components. The 24 V mains unit supplies the SK 200E, using a mains voltage of 400 V .	0...100\% Setpoint Supply: 230 or 400 V
Connection Unit TU4 SK TI4-TU-NET Part No. 275280100 (IP55) Part No. 275280600 (IP66)	The Connection Unit is always required in order to use an external Technology Unit. It implements the mechanical and electrical connection of the TU4 to the SK 200E or the wall mounting kit.	$18 \times 2.5 \mathrm{~mm}^{2}$ AWG 26-14 Spring-loaded terminals
TU4 Wall-mounting kit SK TIE4-WMK-TU Part No. 275274002	Using the wall mounting kit, a Technology Unit can be used/installed separately from the SK 200E.	
**) In order to use the TU4 modules, a suitable SK T14-TU-NET Connection Unit must always be available.		

3.2 Installation of optional modules

3.2.1 Installation of internal customer units SK CU4-...

The installation of Customer Units is carried out in the Connection Unit SK T14-... SK 200E underneath the control terminal block. The control terminal block of the frequency inverter and two bolts (bag enclosed with the customer unit) are used to fix this. Only one Customer Unit per FI is possible!

The pre-assembled cable necessary for connection to the frequency inverter (SK 200E) is enclosed in the bag provided with the customer unit. Connections are made according to the following table.
The bus modules require a 24 V supply voltage.

Allocation of the cable sets (bag enclosed with the customer unit)

	Purpose	Terminal designation		Cable colour
	Power supply (24 V DC) (between the frequency inverter and the customer unit)	44	24V	Brown
		40	GND	Blue
	System bus	77	SYS+	Black
		78	SYS-	Grey
	Power supply (24V DC) (between the frequency inverter and the customer unit)	44	24V	Brown
		40	GND	Blue
	Power supply (mains (AC)) (between the mains supply and the customer unit)	L1	L1	Brown
		L2	L2	Black
	Frequency output	B1	FOUT	Black

3.2.2 Installation of external technology units SK TU4-...

> WARNING Installations should only be made by qualified personnel, in strict compliance with the warning and safety information.
> Modules must not be inserted or removed unless the device is free of voltage. The slots can only be used for the intended modules.
> Installation of the technology unit at a location away from the frequency inverter is possible with an additional wall-mounting kit SK TIE4-WMK-TU.

Together with a connection unit SKTI4-TU-BUS(-C) or SK TI4-TU-NET(-C) the technology units SK TU4-...(-C) form a discrete functional unit. This can be screwed to the SK 200E frequency inverter or can be installed independently by means of an optional wall-mounting kit SK TIE4-WMK-TU. In order to ensure reliable operation, the length of the cable between the module and the frequency inverter should not exceed 30 m .

3.2.2.1 Dimensions

As a functional unit in combination with an SK TI4-TU-... connection unit, the SK TU4-... has the following dimensions.

Fig.: Functional unit SK TU4-... and SK TI4-TU-... with wall-mounting kit SK TIE4-WMK-TU

3.2.2.2 Adapter unit SK TI4-TU-BUS(-C) and SK TI4-TU-NET(-C)

Various cable glands, protected with blank plugs are fitted to the sides of the housing of the BUS or mains adapter unit.

The following holes are available for the cable glands:

- $2 \times 1 \mathrm{M} 20 \times 1.5$ (at side)
- $4 \mathrm{M} 16 \times 1.5$ (underside)
- $2 \mathrm{M} 25 \times 15$ (at rear, without blank plugs)

Example:
external BUS adapter unit SK TI4-TU-BUS

The transparent screw connection at the top right (M20 x 1.5) (only SK TI4-TU-BUS(-C)) is used for access to the diagnostic interface (RJ12 socket, interface RS232/RS485). The top left screw connector is not used.

3.2.2.3 Installing the SK TI4-TU-... on the SK 200E

The screw connectors and seals required for installation are enclosed with the modules or are fitted to the intended locations.
The installation of the Technology Units on the SK 200E is performed as follows:

1. Switch off the mains.
2. Remove the two M25 blank caps from the required side of the frequency inverter (right / left)
3. Removal of the PCB (with terminal bar) from the BUS adapter unit.
4. Fit the enclosed seal to the SK TI4-TU-... Adapter Unit and mount the unit on the SK 200E with the four enclosed bolts.
5. Screw in both of the reductions from M25 to

Installation of the external Technology Unit on the SK 200E M12 from the inner side of the Adapter Unit of the frequency inverter. (Purpose: to avoid damage to the internal wiring in the region of the transition from the SK TI4-TU-... (Adapter Unit of the external optional module) to the SK TI4-... (frequency inverter Adapter Unit)
6. Reinstall the PCB (See Item 3) and make the electrical connection.
7. Fit and screw on the SK TU4 module.

3.2.2.4 Wall-mounting of the SK TI4-TU-...

The screw connectors and seals required for installation (except anchor screws) are enclosed with the modules or are fitted to the intended locations.
The connecting cable between the Technology Unit and the SK 200E should not be longer than 30m.

1. Install the Adapter Unit SK TI4-TU-... with the enclosed seal on the wall-mounting kit. To do this: insert the 2 flat head screws (enclosed with the wall-mounting kit) from the outside into the (countersunk) holes and screw the two components (BUS / NET adapter unit) tightly together with the two bolts (enclosed with the wallmounting kit).

Wall-mounting kit SK TIE4-WMK-TU with field bus Technology Unit

2. Make a suitable connection between the Technology Unit and the frequency inverter. Take care that there is appropriate screw fitting and sealing of the modules. The cable sets included with the BUS / NET Adapter Unit are not used.
3. Fit and screw on the SK TU4 module.

3.3 Control connections and configuration

The I/O and field bus option modules must be supplied with a control voltage of 24 V DC ($\pm 20 \%)$. Wiring sleeves must be used for flexible cables.

Name	Data
Rigid cable cross-section	$0.14 \ldots 2.5 \mathrm{~mm}^{2}$
Flexible cable cross-section	$0.14 \ldots 1.5 \mathrm{~mm}^{2}$
AWG standard	AWG $26-14$
Tightening torque (for screw terminals)	$0.5 \ldots 0.6 \mathrm{Nm}$

Note

For CANopen and DeviceNet, because of the separate potential levels of the system bus and the field bus, both bus systems must have a separate supply (24V).

The data cables (e.g. CANopen, system bus) must be installed as short as possible and with the same length inside the terminal box (unshielded part of the wiring). Associated data cables (e.g.: Sys+ and Sys-) must be twisted together.
In case of EMC problems, a potential separation for the supply of the field bus, the digital inputs and system bus interfaces as well as the two additional digital outputs of the external Technology Unit should be provided.
Detailed information concerning the control connections can be found in Section 3.4, 3.5.

The cable shield must be connected to the functional earth ${ }^{1}$ (usually the electrically conducting mounting plate), in order to prevent EMC interference in the device.
In order to achieve this, with the field bus connection the metal, metric EMC screw connections for the connection of the cable shielding to the frequency inverter or the housing of the Technology Unit must be used. This ensures a large-area connection of the functional earth.

Configuration

The configuration is identical for all module versions (except for Mains Unit SK xU4-24V-..., where no configuration is necessary) All the necessary settings are made with the hardware via a DIP switch element (multiple switch block).

[^4]
3.4 Details of internal Customer Units SK CU4-...

3.4.1 Mains Unit, SK CU4-24V-...

The Mains Unit is used for the production of the 24 V control voltage for the FI from the available mains voltage ($115 \mathrm{~V} / 230 \mathrm{~V} / 380 \mathrm{~V} / 500 \mathrm{~V}$). With this, a separate external 24 V control voltage is not necessary.
An analog input is also available for the connection of the potentiometer adapter SK CU4-POT

- Mains unit for 100-240V, SK CU4-24V-123-B
- Mains unit for 380-500V, SK CU4-24V-140-B
- +24 V - output voltage
- $1 x$ analog input (e.g. Potentiometer Adapter)
- $1 x$ pulse output
- Status LED $=24 \mathrm{~V}$

- Max. permissible continuous current: 420mA

The terminal block of the Customer Unit SK CU4-24V-... is divided into two potential levels.

To process current setpoint values, the enclosed bag contains a 500Ω resistor, for connection between terminals 11 and 14. Matching of the relevant input of the frequency inverter is made via parameter (P 420).

Setpoint	Parameter [Array]	Setting
$0 \ldots 20 \mathrm{~mA}$	P420 [-02] or [-03]	$\{26\}$
$4 \ldots 20 \mathrm{~mA}$	P420 [-02] or [-03]	$\{27\}$

Details of the control connections

Connection plan and parameterisation of SK xU4-24V-..., example

DIP switch settings:

or
recommended
parameter setting, DIP1-8 = off:

DIP3 $=$ off, DIP4 $=$ on, DIP5 $=$ off (Section 5.1.2)

P400 [07] = $1 \quad \mathrm{P} 420$ [02] = 2
$P 420[01]=1 \quad P 420[03]=26$ (for 0-10V $/ 0-20 \mathrm{~mA}$ signals)
$=27$ (for $2-10 \mathrm{~V} / 4-20 \mathrm{~mA}$ signals)

3.4.2 Potentiometer Adapter, SK CU4-POT

The digital signals R and L can be directly applied to the corresponding digital inputs 1 and 2 of the SK 200E.
The potentiometer ($0-10$) can be evaluated via a 24 V module or I/O extension and converted to proportional impulses (frequency). These impulses can then be evaluated via the digital input 2 or 3 (P420 [02]/[03] = 26/27) of the SK 200E in the form of a setpoint value (P400 [-06]/[-07]).

Connection plan and parameterisation of SK CU4-POT, example

DIP switch settings:
or
recommended
parameter setting, DIP1-8 = off:

DIP3 $=$ off, DIP4 $=$ on, DIP5 $=$ off (Section 5.1.2)

P 400 [07] $=1 \quad \mathrm{P} 420$ [02] $=2$
P 420 [01] $=1 \quad \mathrm{P} 420[03]=26$

3.4.3 SK CU4-IOE-, I/O extension

The internal I/O units can record sensor and actuator signals. These can be used for a drive function or forwarded to a host bus system (e.g. Profibus or CANopen).

- $2 x$ digital inputs
- $2 x$ analog inputs
- 1x analog output
- Status LEDs: Module status, module error, Dig In 1, Dig. In 2
- DIP switches for selection 0-10V, -10-10V, 0-20mA, 4-20mA
- DIP switches for: addressing, bus termination

Similar to illustration

The terminal block of the Customer Unit SK CU4-IOE... is divided into two potential levels.

3.4.3.1 Details of the control connections

3.4.3.2 Configuration

The configuration of the system bus settings and the functions of the analog inputs and outputs is made via a 12-part DIP switch element. Both analog inputs are differential inputs. The input voltage is simultaneously measured in a unipolar and bipolar manner. The evaluation is unipolar or bipolar, according to the DIP switch setting, with or without offset, as a current or voltage input.

*for DIP12 = ON: Address 10 ... 13 instead of $20 \ldots 23$

Up to hardware version V1.1 R1 and software version V1.0 R1 of the I/O extension the setpoint of the analog output could be inverted via DIP switch No. 12:

$$
\begin{array}{lll}
\text { DIP12 setting "OFF": } & 100 \% \text { setpoint }=10 \mathrm{~V} & 0 \% \text { setpoint }=0 \mathrm{~V} \\
\text { DIP12 setting "ON": } & 100 \% \text { setpoint }=0 \mathrm{~V} & 0 \% \text { setpoint }=10 \mathrm{~V}
\end{array}
$$

With newer versions, this setting is made in parameter (P163) "Inversion AOut".

The setting of the DIP switches is only read out during the initialisation phase. Changes made while running are therefore not taken into account.

The side of the DIP switch element corresponding to "ON" should be checked (see label on the DIP switch element) as for process reasons, this may vary during the manufacture of the module.

3.4.3.3 Signal status LEDs

The statuses shown by the LED can be read out with the aid of a parameterisation tool from Getriebebau Nord (NORDCON software, SimpleBox, ParameterBox) and of course via the information parameter (P173) "Module Status" (Section 6.3.2).

Displays specific to the module

The status of the Technology Unit or the system bus is indicated by the LEDs DS and DE.

$\begin{gathered} \text { LED (green) } \\ \text { DS } \\ \rightarrow \text { Device State } \end{gathered}$	$\begin{aligned} & \text { LED (red) } \\ & \text { DE } \\ & \rightarrow \text { Device Error } \end{aligned}$	Meaning slow flashing $=2 \mathrm{~Hz}$ (0.5 s cycle) _quick flashing $=4 \mathrm{~Hz}$ (0.25 s cycle)
OFF	\bigcirc OfF	Technology Unit not ready, no control voltage
O on	\bigcirc OFF	Technology Unit ready, no error, at least one frequency inverter is communicating via the system bus
O ${ }^{\text {ON }}$	Flashing 0.25s	Technology Unit ready, however \rightarrow one or more of the connected frequency inverters is in error status
', Flashing 0.25s	\bigcirc OFF	Technology Unit ready and at least one further participant is connected to the system bus, however, \rightarrow there is no frequency inverter on the system bus (or the connection is interrupted) \rightarrow Address error of one or more system bus participants
' Flashing 0.25s	Flashing 0.25 s Flashing interval $1 x-1 s$ pause	System bus is in "Bus Warning" status \rightarrow Communication on the system bus faulty or \rightarrow no other participant on the system bus
'O'Flashing 0.25s	Flashing 0.25 s Flashing interval $2 \mathrm{x}-1 \mathrm{~s}$ pause	\rightarrow System bus is in "Bus Off" status or \rightarrow the 24 V voltage supply to the system bus has been interrupted during operation
'O. Flashing 0.25s	Flashing 0.25 s Flashing interval $3 x-1 s$ pause	\rightarrow no 24 V voltage supply to the system bus (System bus is in "Bus Off" status)
'O' Flashing 0.25s	$-\phi^{\text {FFasshing }} 0.25 \mathrm{~s}$ Flashing interval $4 x-1 s$ pause	Module fault \rightarrow EEPROM fault
' Flashing 0.25s	- 1 Flashing 0.25 s Flashing interval $5 x-1 s$ pause	Module fault \rightarrow AOUT error (analog output) \rightarrow DIP switch configuration error
OFF		System error, internal program execution fault \rightarrow EMC interference (observe wiring guidelines!) \rightarrow Module faulty

I/O displays

The status of the additional digital inputs on the I/O module SK CU4-IOE is indicated by the relevant LEDs.

I/O channel	Status display	Meaning
	LED (green)	
Digital input 1	ON	High potential on terminal C1
D1	OFF	Low potential on terminal $\mathbf{C 1}$
Digital input 2	ON	High potential on terminal C2
D2	OFF	Low potential on terminal C2

3.4.3.4 Termination resistor

Termination of the system bus is carried out at both of its physical ends by switching in the relevant termination resistors (DIP switches). If the IO module forms such an end, the relevant DIP switch "S-Bus term." must be set to "ON".

3.4.3.5 Addressing

Up to eight I/O modules can be used on a system bus. By assignment of a specific address and designation of the "first" or "second" or "second" module, up to two I/O modules can be assigned to each frequency inverter. Alternatively, there is also the possibility of making one or two I/O modules available to up to four frequency inverters in parallel (\rightarrow Broadcast mode).
It must be noted:

- Addresses: Setting exclusively via DIP switch (No.: 02 and 03) in binary code („S-Bus Addr. Bit 0" and „S-Bus Addr. Bit 1")
- Definition of 1 st or 2 nd I/O module: Setting exclusively via DIP switch (No.: 12) ("2nd IOE Mode")
- Changes of address: only become effective after switching the I/O module off and on again
- With the use of two I/O modules for each frequency inverter it does not matter whether these are two SK CU4-IOE modules, two SK TU4-IOE modules or one of each modules.
- Up to hardware version V1.1 R1 and firmware version V1.0 R1 of the I/O - extension and firmware version V1.1 R2 of the frequency inverter only the evaluation of one I/O - expansion per frequency inverter is possible.

Care must be taken that each address is only assigned once. In a CAN-based network (See also Section 9.7), the double assignment of addresses may lead to misinterpretation of the data and therefore undefined activities in the system.

3.4.3.6 Assignment of functions

The assignment of functions for the digital and analog inputs and outputs is made in the following parameters of the frequency inverter.

Parameter	Function designation
P400	Setpoint input function
P401	External analog input mode
P402	External analog input matching 0\%
P403	External analog input matching 100\%
P417	Offset analog output
P418	Function analog output
P419	Standardisation, analog output
P480	Function of BUS IO In bits
P481	Function of BUS IO Out bits
P482	Standardisation of BUS IO Out bits
P483	Hysteresis of BUS IO Out bits

The parameters of the $I O$ module are used exclusively for information and testing purposes. Exception:

- (P161) (\rightarrow Matching of the filter settings for the IO signals),
- (P162) (\rightarrow Toggling between normal and broadcast operation) and
- (P163) (\rightarrow Inversion of the analog output signal)

3.4.3.7 Broadcast operation

In "broadcast mode" (parameter (P 162)) it is possible to make up to two I/O - modules available in parallel for a maximum of four frequency inverters. The prerequisite for this is that the Fls are on a common system bus and no frequency inverter address has been assigned more than once (see Section 5.1.1).
The frequency inverters therefore have common access to the I/Os and evaluate the input signals according to their own FI parameterisation. Output signals from these frequency inverters, which are sent to the common I/O module are subjected to an "OR" logic internally by the module. I.e. a digital output (SK TU4-IOE-...) is set as soon as one of the four frequency inverters accesses it. In addition, the highest analog value is available via the analog output of the I/O extension module.

3.4.4 PROFIBUS DP, SK CU4-PBR

Up to four connected frequency inverters can be managed by the internal PROFIBUS DP module (control, status messages, parameterisation and diagnosis).

- Baud rate: max. 12 MBaud
- Protocol: DPV 0 and DPV 1
- $2 x$ digital inputs
- Automatic detection: PPO type, baud rate
- DIP switches for: addressing, bus termination
- Status LEDs: Module status, module error, bus status, bus error, Dig. In 1, Dig. In 2

The terminal block of the Customer Unit SK CU4-PBR... is divided into two potential levels. Up to 2 sensors can be connected via the terminal block (terminals C 1 and C 2).

NOTE

Looping of the 24 V supply voltage (terminals $40 / 44$) is in principle possible, however, a maximum current load of 2A for the SK CU4-PBR must not be exceeded!

Detailed information about operation via PROFIBUS DP can be found in the relevant supplementary manual BU0220.

- www.nord.com -

Details of the control connections

Terminal/	Function	Data	Description / wiring suggestion	Parameter
Name				
44 24V	external 24V supply (module, field and system bus level)	$\begin{aligned} & 24 \mathrm{VDC} \pm 20 \% \\ & \approx 90 \mathrm{~mA} \\ & \text { protected against reverse } \\ & \text { polarity } \\ & \text { Max. permissible current } \\ & \text { load: 2A } \end{aligned}$	Connection for module supply voltage and 24 V source for the digital inputs (DIN1 and DIN2)	-
40 GND	Reference potential for digital signals			-
C1 DIN1	Digital input 1 (I/O PROFIBUS DP DIN1)	Low 0V ... 5V High 15 V ... 30 V $\mathrm{R}_{\mathrm{i}}=8.1 \mathrm{k} \Omega$ Input capacitance 10 nF Scan rate 1 ms	Each digital input has a reaction time of 1 ms Inputs compliant with EN 61131-2, Type 1	P174
C2 DIN2	Digital input 2 (I/O PROFIBUS DP DIN2)			P174
77 Sys+	System bus data cable +		System bus interface	-
78 Sys-	System bus data cable -			-
40 GND	Reference potential for digital signals	$\begin{aligned} & \text { 24VDC } \pm 20 \% \\ & \approx 90 \mathrm{~mA} \\ & \text { protected against reverse } \\ & \text { polarity } \\ & \\ & \text { Max. permissible current } \\ & \text { load: 2A } \end{aligned}$	Connection for module supply voltage and source for the digital inputs (DIN1 and DIN2)	-
44 24V	external 24 V supply (module, field and system bus level)			-
Potential separation				
$\begin{array}{\|l\|} \hline 82 \\ \text { (incoming) } \end{array} \quad \text { PBR B }$	Bus + (red wire) RxD/TxD-P	RS485 transfer technology	The use of a twisted, shielded twowire cable / Profibus cable type A is strongly recommended	-
$\begin{array}{\|l\|l\|} \hline 81 & \text { PBR A } \\ \text { (incoming) } \end{array}$	Bus - (green wire) RxD/TxD-N			-
46 GND PBR	Data ground Bus			-
83 RTS	Ready to send			
47 +5V PBR	5 V bus supply voltage	internal Profibus voltage supply	Note: Should not be used externally!	-
$\begin{array}{\|l\|} \hline 82 \\ \text { (outgoing) } \end{array}$	Bus (red wire) RxD/TxD-P	RS485 transfer technology	The use of a twisted, shielded twowire cable / Profibus cable type A is strongly recommended	-
$\begin{array}{\|l\|} \hline 81 \end{array} \quad \text { PBR A }$	Bus (green wire) RxD/TxD-N			-
46 GND PBR	Data ground			-

3.4.5 CANopen, SK CU4-CAO

Up to four connected frequency inverters can be managed by the internal CANopen module via CANopen (control, status messages, parameterisation and diagnosis).

- Baud rate: max. 1 MBaud
- Protocol: DS301 and DSP 4021
- $2 x$ digital inputs
- DIP switches for: addressing, bus termination, baud rate
- Status LEDs: Module status, module error, bus status, bus error, Dig. In 1, Dig. In 2

Similar to illustration
The terminal block of the Customer Unit SK CU4-CAO is divided into two potential levels. Up to 2 sensors can be connected via the terminal block (terminals C1 and C2).

\qquad
NOTE

Looping of the 24 V supply voltage (terminals 45/46) or also (terminals 44/40) is in principle possible, however, a maximum current load of 2A for the SK CU4-CAO must not be exceeded!

Detailed information about operation via CANopen can be found in the relevant supplementary manual BU0260.

Details of the control connections

Terminal/	Function	Data	Description / wiring suggestion	Parameter
Name				
44 24V	external 24 V supply (module, system bus level)	$\begin{aligned} & \text { 24VDC } \pm 20 \% \\ & \approx 50 \mathrm{~mA} \\ & \text { protected against reverse } \\ & \text { polarity } \\ & \\ & \text { Max. permissible current } \\ & \text { load: } 2 \mathrm{~A} \end{aligned}$	Connection for module supply voltage and 24 V source for the digital inputs (DIN1 and DIN2)	-
40 GND	Reference potential for digital signals			-
C1 DIN1	Digital input 1 (I/O CANopen DIN1)	Low 0V ... 5V High 15V ... 30V $\mathrm{R}_{\mathrm{i}}=8.1 \mathrm{k} \Omega$ Input capacitance 10 nF Scan rate 1 ms	Each digital input has a reaction time of 1 ms Inputs compliant with EN 61131-2, Type 1	P174
C2 DIN2	Digital input 2 (//O CANopen DIN2)			P174
77 Sys+	System bus data cable +		System bus interface	-
78 Sys-	System bus data cable -			-
40 GND	Reference potential for digital signals			
Potential separation				
$45 \quad 24 \mathrm{~V}$ Bus	24V bus supply voltage (Field bus)	For CANopen - Bus 24VDC $\pm 20 \%$ $\approx 50 \mathrm{~mA}$, protected against reverse polarity	Version to terminal 44 is electrically isolated. CANopen bus supply is essential	-
75 CANopen+ (incoming)	Bus + CAN H	RS485 transfer technology	The use of a twisted, shielded twowire cable is strongly recommended	-
76 CANopen- (incoming)	Bus - CAN L			-
46 GND Bus	Data ground Bus		BUS reference potential Version to terminal 40 is electrically isolated	-
90 SHLD	Bus shield			
$45 \quad 24 \mathrm{~V}$ Bus	24V bus supply voltage	See above (terminal 45).	Version to terminal 44 is electrically isolated. CANopen bus supply is essential	-
75 CANopen+ (outgoing)	Bus + CAN H	RS485 transfer technology	The use of a twisted, shielded twowire cable is strongly recommended	-
76 CANopen(outgoing)	Bus - CAN L			-
46 GND Bus	Data ground Bus		BUS reference potential Version to terminal 40 is electrically isolated	-

3.4.6 DeviceNet, SK CU4-DEV

Up to four connected frequency inverters can be managed by the internal DeviceNet module via DeviceNet (control, status messages, parameterisation and diagnosis).

- Baud rate: Max. 500 kBaud
- Protocol: AC-Drive and NORD-AC
- $2 x$ digital inputs
- DIP switches for: addressing, baud rate
- Status LEDs: Module status, module error, bus status, bus error, Dig. In 1, Dig. In 2

Similar to illustration
The terminal block of the Customer Unit SK CU4-DEV is divided into two potential levels. Up to 2 sensors can be connected via the terminal block (terminals C1 and C2).

Detailed information about operation via DeviceNet can be found in the relevant supplementary manual BU0280.

- www.nord.com -

Details of the control connections

Terminal/	Function	Data	Description / wiring suggestion	Parameter
Name				
44 24V	external 24 V supply (module, system bus level)	$\begin{aligned} & 24 \mathrm{VDC} \pm 20 \% \\ & \approx 50 \mathrm{~mA} \\ & \begin{array}{l} \text { protected against reverse } \\ \text { polarity } \end{array} \\ & \hline \end{aligned}$	Connection for module supply voltage and 24 V source for the digital inputs (DIN1 and DIN2)	-
40 GND	Reference potential for digital signals			-
C1 DIN1	Digital input 1 (//O DeviceNet DIN1)	Low 0V ... 5V High 15V ... 30V $\mathrm{R}_{\mathrm{i}}=8.1 \mathrm{k} \Omega$ Input capacitance 10nF Scan rate 1 ms	Each digital input has a reaction time of 1 ms Inputs compliant with EN 61131-2, Type 1	P174
C2 DIN2	Digital input 2 (I/O DeviceNet DIN2)			P174
77 Sys+	System bus data cable +		System bus interface	-
78 Sys-	System bus data cable -			-
40 GND	Reference potential for digital signals			-
Potential separation				
45 24V Bus	24V bus supply voltage (Field bus)	```For DeviceNet - Bus 24VDC }\pm20 \approx50mA, protected against reverse polarity```	Version to terminal 44 is electrically isolated. DeviceNet bus supply is essential	-
$\begin{array}{ll} 75 & \text { DVN + } \\ \text { (incoming) } \end{array}$	Bus + DeviceNet H	RS485 transfer technology	The use of a twisted, shielded twowire cable is strongly recommended	-
$76 \text { (incoming) } \quad \text { DVN - }$	Bus - DeviceNet L			-
46 GND Bus	Data ground		Bus reference potential Version to terminal 40 is electrically isolated	-
90 SHLD	Shield		Data cable shielding	-
45 +24V Bus	24 V bus supply voltage (Field bus)	See above (terminal 45).	See above (terminal 45).	-
$\begin{array}{ll} \hline 75 & \text { DVN + } \\ \text { (outgoing) } \end{array}$	Bus + DeviceNet H	RS485 transfer technology	The use of a twisted, shielded twowire cable is strongly recommended	-
$\begin{array}{\|l\|} \hline 76 \\ \text { (outgoing) } \end{array}$	Bus - DeviceNet L			-
46 GND Bus	Data ground		See above (terminal 46).	-

3.5 Details of external Technology Units SK TU4-...

The Technology Units are divided into two different groups. The BUS group includes all the Bus modules and the I/O extension. These are connected to the SK 200E via the system bus.
The NET group includes the Mains Unit and PotentiometerBox modules. These are each equipped with a 24 V mains unit for the supply of the SK 200E and provide the facility processing analog signals.
Because of the very wide variety of functions, these two groups of devices require different adapter units.

3.5.1 Adapter Unit SK TI4-TU-BUS I-NET

Bus modules $=$ SK TI4-TU-BUS Mains unit modules $=$ SK TI4-TU-NET

Feature	Bus modules	Mains Unit modules
Designation of Adapter Unit	SK TI4-TU-BUS	SK TI4-TU-NET
Designation of Technology Units	SK-TU4-PBR-...	SK-TU4-POT-...
	SK-TU4-CAO-... SK-TU4-DEV-... SK-TU4-IOE-...	SK-TU4-24V-...
	Yes	
24V supply required	No	No
24V supply integrated	Yes	Yes
System bus connection	Yes	No
Motor mounting possible	Yes, with wall-mounting kit SK TIE4-WMK-TU	Yes, Mounting near to motor possible

All connections are made via the Adapter Unit. This also includes the customer's control of the module and the connection of the module to the SK 200E. Parallel to this, the digital inputs and outputs of the SK 200E are also available.

The relevant Technology Unit is attached to the appropriate Adapter Unit with screws.
Installation information can be found in Section 3.2.2.

3.5.1.1 SK T14-TU-BUS connections

The precise connections of the 36 spring-loaded terminals depend on the Technology Unit used. Details can be found in the relevant sections for the Technology Units

3.5.1.2 SK TI4-TU-NET Connections

The terminal block of the Adapter Unit SK TI4-TU-NET is divided into two potential levels.

Details of the control connections

Terminal/		Function	Data	Description / wiring suggestion	Parameter
Name					
43	VO/24V	24V supply	$24 \mathrm{VDC} \pm 10 \%$ max. 420 mA (total) integrated short-circuit monitoring, limited overtemperature and overload monitoring	Supply voltage (output) for the supply of an SK 200E or other module with 24 V .	-
40	GND	Reference potential			-
43	24V	24V supply			-
40	GND	Reference potential			-
43	24 V	24V supply			-
40	GND	Reference potential			-
11	+10V	10 V reference voltage	$\begin{aligned} & 10 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & \text { Max. } \\ & \text { load } 5 \mathrm{~mA} \end{aligned}$	Only in combination with SK TU4-24V-...	-
14	AIN+	Analog input positive	$\begin{array}{\|l\|} \hline 0 \text {... 10V, } \\ \text { Resolution: 8Bit } \\ \text { Accuracy: } 0.2 \mathrm{~V} \end{array}$	For connection of potentiometer 5-10k Ω. A 500Ω burden resistor for the	-
12	OV GND analog	Analog Ground	Reference potential for analog signals	contained in the enclosed bag.	-
B1	FOUT	Frequency output	SPS compatible in compliance with EN61131-2 Low: 0V, High: 24 V Pulse frequency: ~ 1 - $32 \mathrm{kHz}$	Pulses for evaluation via the digital input function P420 [02]/[03] = 26/27 and the analog meaning in P400 [-06]/[-07]. With the use of an SK TU4-24V-... this outputs the setpoint value of the analog input. With the use of an SK TU4-POT-... this outputs the setpoint value of the integrated potentiometer.	$\begin{aligned} & \text { P420 } \\ & \text { P400 } \end{aligned}$
B2	ON-L	Digital output, enable left		Only in combination with SK TU4-POT-... Control via "Left" key	P420
B3	ON-R	Digital output, enable right		Only in combination with SK TU4-POT-... Control via "Right" key	P420
40		Reference potential			-
Potential separation					
PE		PE, Earth		Does not need to be connected. Is already connected to the module housing.	-
				Mains connection, 100-240V or $380-500 \mathrm{~V}$, depending on the module	-
L1		Mains connection 1.Phase			-
					-
L2/N		Mains connection 2. Phase			-

3.5.2 Mains Unit, SK TU4-24V-...

The Mains Unit is used for the production of the 24 V control voltage for the FI from the available mains voltage ($115 \mathrm{~V} / 230 \mathrm{~V} / 380 \mathrm{~V} / 500 \mathrm{~V}$). With this, a separate external 24 V control voltage is not necessary.
An analog output is also available for the connection of a potentiometer.

- Mains unit for 100-240V, SK TU4-24V-123-B
- Mains unit for 380-500V, SK TU4-24V-140-B
- +24V- output voltage
- $1 x$ analog input (e.g. potentiometer)
- $1 x$ impulse output
- Status LED $=24 \mathrm{~V}$
- Max. permissible continuous current: 420 mA

The Mains unit SK TU4-24V-...can only be used in combination with an SK TI4-TU-NET adapter unit. Details of the control connection are described in the Section for the Adapter Unit (Section 3.5.1.2) A connection and parameterisation example is described in Section 3.4.1.

To process current setpoint values (0(4)-20mA), the enclosed bag contains a 500Ω resistor, for connection between terminals 11 and 14. Matching of the relevant input of the frequency inverter is made via parameter (P420).

Setpoint	Parameter [Array]	Setting
$0 \ldots 20 \mathrm{~mA}$	P420 [-02] or [-03]	$\{26\}$
$4 \ldots 20 \mathrm{~mA}$	P420 [-02] or [-03]	$\{27\}$

3.5.3 PotentiometerBox SK TU4-POT-...

The PotentiometerBox SK TU4-POT enables simple motor speed and direction control via a series SK 200E frequency inverter. LEDs on the enable keys indicate the selected enable direction. In addition, with the integrated mains unit, the 24 V control voltage for the Fl is produced from the mains voltage $(115 \mathrm{~V} / 230 \mathrm{~V} / 380 \mathrm{~V} / 500 \mathrm{~V})$. With this, a separate external 24 V control voltage is not necessary.

- Mains unit for 100-240V, SK TU4-POT-123-B
- Mains unit for 380-500V, SK TU4-POT-140-B
- +24V- output voltage
- Button ON R / OFF / ON L
- Setpoint potentiometer 0...100\%
- $1 \times$ impulse output (for setpoint)
- Status LED = 24V, enable R, enable L
- Max. permissible continuous current (Mains Unit):

Connection plan, example:

DIP switch settings:

DIP3 = off, DIP4 = on, DIP5 = off
(With this, no further parameter settings are necessary! See also Section 5.1.2)
or
recommended
parameter setting, DIP1-8 = off:
P 400 [07] $=1 \quad \mathrm{P} 420$ [02] $=2$
$\mathrm{P} 420[01]=1 \quad \mathrm{P} 420[03]=26$

3.5.4 I/O Extension, SK TU4-IOE, ...-M12

The internal I/O units can record sensor and actuator signals. These can be used for a drive function or forwarded to a host bus system (e.g. Profibus or CANopen). Up to two I/O modules (and combinations: 1 x SK CU4-IOE and $1 \times$ SK TU4-IOE) can be connected to an inverter (up to hardware version V1.1 R1 and firmware version V1.0 R1 of the I/O - extension and firmware version V1.1 R2 of the frequency inverter only the evaluation of one I/O - extension is possible for each frequency inverter.).

The I/O extension SK TU4-IOE-... requires an SK TI4-TU-BUS Adapter Unit. Communication with the frequency inverter(s) is via the system bus. All connections (power supply, system bus, sensors,...) are made via the terminal block of the BUS Adapter Unit. The M12-versions of the I/O - extension (SK TU4-IOE-M12) also provide M12 connections for each of the digital inputs and outputs on the front side.

- $4 x$ digital inputs

Control connections SK TU4-IOE(-...)

The double spring terminal block of the BUS -Adapter Unit is colour coded to indicate the three different potential levels.
A separate voltage source should be used to supply the DOs. However, it is also possible to implement the supply of the DOs by bridging the 24 V 0 and GND o with one of the terminals of the system bus level (24 V and GND). However, in this case it should be noted that this produces an increased risk of errors on the bus cables.
The sensors and actuators are connected to the terminal block. Alternatively, the SK TU4-IOE-M12 module enables connection of the digital I/Os via the M12 round plug connectors (Socket, 5-pin, A-coded) on the front of the module.
Double use of the inputs via the terminal block and the M12 round plug should be avoided.

	Analog IOs				System bus level and digital inputs										Digi	o	uts
10 VA	AlN1+	AIN1-	GND A	AOUT ${ }^{\text {I }}$	24 V	${ }_{\text {(as 11) }}^{24}$	GND	GND	DIN 1	Gnd	$\begin{aligned} & 24 \mathrm{~V} \\ & \text { as } \\ & \text { as } \\ & 111 \end{aligned}$	DIN 2	GND	$\begin{gathered} 24 \mathrm{~V}, \\ (a 5 \\ 11) \end{gathered}$	${ }_{\text {2 }}^{\text {24V }}$ D	DO 1	GNDO
1	3	5	7	9	11	13	15	17	19	21	23	25	27	29.	31	33	35
2	4	6	8	10!	12	14	16	18	20	22	24	26	28	30.	32	34	36
10 VA	AIN2+	AIN2-	GND A		$\begin{aligned} & \text { 24V } \\ & \text { as } \\ & \text { (as } \\ & \hline \end{aligned}$	Sys+	Sys-	GND	DIN 3	GND	$\begin{aligned} & \text { 24V } \\ & \text { as } \\ & \text { as } \\ & \hline \end{aligned}$	DIN 4	GND	$\begin{gathered} 24 \mathrm{~V} \\ \text { (as } \\ \text { (ai) } \\ 1 \end{gathered}$	GNDO	DO 2	GND ${ }_{\text {D }}$

Example for the connection of SK TU4-IOE to SK 200E

Looping of the 24 V supply voltage (terminals $\mathbf{1 1 / 1 5 \text {) is in principle possible, however, a }}$ maximum current load of 3A for the SK TU4-IOE(-...) must not be exceeded!

Detail of the M12 connections of the SK TU4-IOE-M12

The special wiring of the M12 round plug connectors enables the connection of both single and double sensors, which are equipped with normal M12 system plugs with standard sensor/actuator wiring.
If the M12 round plug connectors are used, the terminal block connections for the digital inputs (terminals 19, 20, 25, 26) must not be used.

3.5.4.1 Details of the control connections

Terminall Name	Function	Data	Description / wiring suggestion	Parameter
$\begin{array}{ll} \hline 1 & +10 \mathrm{~V} \end{array}$ 2	10 V reference voltage	$\begin{aligned} & 10 \mathrm{~V} \pm 0.1 \mathrm{~V} \\ & \text { Max. } \\ & \text { load } 20 \mathrm{~mA} \end{aligned}$	Potentiometer supply voltage	-
$3 \quad$ AlN1+	Analog input 1 positive	Version as differential input	Functions: 0V ... 10V / -10V ... +10V / $0 \mathrm{~mA} . . .20 \mathrm{~mA} / 4 \mathrm{~mA} . . .20 \mathrm{~mA}$ (selection via DIP switch)	$\begin{array}{\|l} \text { P400 } \\ \text { P176 } \end{array}$
$5 \quad$ AlN1-	Analog input 1 negative	Resolution 12Bit Accuracy: 0.1V		$\begin{array}{\|l} \hline \text { P400 } \\ \text { P176 } \end{array}$
4 AIN2+	Analog input 2 positive	Version as differential input Resolution: 12Bit Accuracy: 0,1V		-
6 AIN2-	Analog input 2 negative			-
$\begin{array}{lr} 7 & 0 \mathrm{~V} \\ 8 & \text { GND analog } \end{array}$	Analog Ground		Reference potential for analog signals	-
9 AOUT	Analog Out	Resolution: 10Bit Accuracy 0.25 V Max. load 5mA	Functions: 0V ... 10V / -10V ... +10V / $0 \mathrm{~mA} . . .20 \mathrm{~mA} / 4 \mathrm{~mA} . . .20 \mathrm{~mA}$ (selection via DIP switch)	$\begin{array}{\|l} \mathrm{P} 400 \\ \text { P176 } \end{array}$
10 PE	PE			-
		Potential separatio		
11 24 V 12 13	external 24 V supply (module, system bus level)	$\begin{aligned} & 24 \mathrm{VDC} \pm 20 \% \\ & \approx 1100 \mathrm{~mA} \\ & \text { protected against reverse } \\ & \text { polarity } \\ & \\ & \text { Max. permissible current } \\ & \text { load: } 3 \mathrm{~A} \end{aligned}$	Connection for module supply voltage and 24 V source for the digital inputs (DIN1 to DIN4)	-
15 GND 17 18	Reference potential for digital signals			-
14 Sys+	System bus data cable +		System bus interface	-
16 Sys-	System bus data cable -			-
19 DIN1	Digital input 1 (I/O IO extension DIN1)	Low 0V ... 5V High 15V ... 30V $\mathrm{R}_{\mathrm{i}}=8.1 \mathrm{k} \Omega$ Input capacitance 10nF Scan rate 1ms	Each digital input has a reaction time of 1 ms Inputs compliant with EN 61131-2, Type 1	$\begin{aligned} & \text { P480 } \\ & \text { P174 } \end{aligned}$
20 DIN3	Digital input 3 (//O IO extension DIN3)			$\begin{aligned} & \text { P480 } \\ & \text { P174 } \end{aligned}$

Terminal/		Function	Data	Description / wiring suggestion	Parameter
Name					
21	$\overline{\text { GND }}$	Reference potential for digital signals	As for terminal 15		-
23 24	$24 \mathrm{~V}$	external 24V supply	As for terminal 11		-
		Digital input 2 (I/O IO extension DIN2)	Low 0V ... 5V High 15V ... 30V $\mathrm{R}_{\mathrm{i}}=8.1 \mathrm{k} \Omega$ Input capacitance 10nF Scan rate 1ms	Each digital input has a reaction time of 1 ms Inputs compliant with EN 61131-2 Type 1	$\begin{aligned} & \text { P480 } \\ & \text { P174 } \end{aligned}$
26	DIN4	Digital input 4 (I/O IO extension DIN4)			$\begin{aligned} & \text { P480 } \\ & \text { P174 } \end{aligned}$
$\begin{aligned} & 27 \\ & 28 \end{aligned}$	GND	Reference potential for digital signals	As for terminal 15		-
$\begin{array}{\|l} 29 \\ 30 \end{array}$	$24 \mathrm{~V}$	external 24V supply	As for terminal 11		-
Potential separation					
31	24 Vo	external 24 V supply of the DOs	$24 \mathrm{VDC} \pm 20 \%$ up to 1 A , according to load protected against reverse polarity	External supply voltage for digital outputs (DO1 and DO2) If necessary, bridge to 24 V terminal	-
32	GND o	Reference potential for digital signals		External supply voltage for digital outputs (DO1 and DO2) If necessary, bridge to GND terminal	-
33	DO1	Digital output 1 (//O IO extension DO1)	Low $=0 \mathrm{~V}$ High: 24V Rated current: 500 mA	The digital outputs should be used with a separate 24 V supply.	$\begin{aligned} & \text { P481 } \\ & \text { P175 } \end{aligned}$
34	DO2	Digital output 2 (I/O IO extension DO2)		Outputs compliant with EN 61131-2	$\begin{aligned} & \text { P481 } \\ & \text { P175 } \end{aligned}$
35 36	GND o	Reference potential for digital signals		External supply voltage for digital outputs (DO1 and DO2) If necessary, bridge to GND terminal	-

3.5.4.2 Configuration

Configuration of the external I/O extension (SK TU4-IOE-...) is carried out in the same way as for the internal I/O - extension SK CU4-IOE. The relevant details are described in Section 3.4.3.2.

3.5.4.3 Signal status LEDs

The definition of the LED signals of the external I/O extension (SK TU4-IOE-...) corresponds to that for the internal I/O - extension SK CU4-IOE. The appropriate details are described in Section 3.4.3.3.

Exception: The signal statuses of the digital inputs and outputs (DI ... / DO ...) are only visualised with the M12 version (SK TU4-IOE-M12) (See also Section 3.5.4 "Details of the M12 connections of the SK TU4-IOE-M12").

I/O displays

I/O channel	Status display	Meaning
	LED (yellow)	
Digital input 1 DI1	ON	High potential on terminal 19 or the M12 socket DII
	OFF	Low potential on terminal 19 or the M12 socket DI1
Digital input 2 DI2	O ON	High potential on terminal $\mathbf{2 5}$ or the M12 socket DI2
	OFF	Low potential on terminal 25 or the M12 socket DI2
Digital input 3 DI3	O ON	High potential on terminal 20 or the M12 socket DI3
	OFF	Low potential on terminal 20 or the M12 socket DI3
Digital input 4 DI4	O ON	High potential on terminal 26 or the M12 socket DI4
	OFF	Low potential on terminal $\mathbf{2 6}$ or the M12 socket DI4
Digital output 1 DO1	O ON	High potential on terminal 33 or the M12 socket DO1
	OFF	Low potential output to terminal 33 or the M12 socket DO1
Digital output 2 DO2	O ON	High potential on terminal 34 or the M12 socket DO1
	OFF	Low potential output to terminal $\mathbf{3 4}$ or the M12 socket DO1

3.5.4.4 Termination resistor, addressing, assignment of functions, broadcast mode

The internal and external I/O extensions have identical functions, insofar as the procedure for configuration, addressing etc. of the SK TU4-IOE-... is carried out as for the SK CU4-IOE-.... (For details, see Sections 3.4.3.4 to 3.4.3.7).

3.5.5 PROFIBUS DP, SK TU4-PBR, ...-M12

Up to four connected frequency inverters can be managed by the external PROFIBUS DP module (control, status messages, parameterisation and diagnosis).

- Baud rate: max. 12 MBaud
- Protocol: DPV 0 and DPV 1
- $4 x$ digital inputs
- $2 x$ digital outputs
- Automatic detection: PPO type, baud rate
- DIP switches for: addressing, bus termination

- Status LEDs: Module status, module error, bus status, bus error, Dig.
- Additional LEDs, M12 version: Dig. In 1-4, Dig. Out 1-2

Control connections SK TU4-PBR(-...)

The double spring terminal block of the BUS -Adapter Unit is colour coded to indicate the three different potential levels .
A separate voltage source should be used to supply the DOs. However, it is also possible to implement the supply of the DOs by bridging the 24 V 0 and GND o with one of the terminals of the system bus level (24 V and GND). However, in this case it should be noted that this produces an increased risk of errors on the bus cables.

The sensors and actuators are connected to the terminal block. Alternatively, the SK TU4-PBR-M12 module enables connection of the digital I/Os via the M12 round plug connectors (Socket, 5-pin, A-coded) on the front of the module.

Double use of the inputs via the terminal block and the M12 round plug should be avoided.

Potential level: Field bus					Potential level: System bus										Potential level: Dos		
Field bus level PROFIBUS DP					System bus level and digital inputs										Digital outputs		
$\begin{aligned} & 24 \mathrm{~V} \\ & \mathrm{PBR} \end{aligned}$	$\underset{\substack{\text { PBR B B } \\ \mathbb{N}}}{ }$	$\underset{\text { PBR A }}{\text { IN }}$	GND B	RTS.	$\begin{gathered} 24 \mathrm{~V} \\ (\text { as } 1) \end{gathered}$	$\underset{(a s i)}{24 v}$	GND	GND	DIN 1	GND	$\underset{(a \mathrm{as} 1)}{24 \mathrm{~V}}$	DIN 2	GND	$\begin{gathered} 24 \mathrm{~V} \\ (\mathrm{csis} 1)^{2} \end{gathered}$	$\underset{\text { DO }}{24 \mathrm{~V} 0}$	DO 1	¢ ${ }_{\text {GND }} \mathrm{O}$
1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35
2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
$\begin{aligned} & \underset{\text { PBR }}{24 \mathrm{~V}} \end{aligned}$	$\overline{\text { PBR B }}$ OUT	$\overline{P B R A}$ OUT	GND B	$\begin{aligned} & +5 \mathrm{~V} \\ & \mathrm{PBR} \end{aligned}$	$\begin{gathered} 2 \mathrm{av} \\ \text { (as 1) } \end{gathered}$	Sys+	Sys-	GND	DIN 3	GND	${ }_{\text {(as 1) }}^{24 \mathrm{~V}}$	DIN 4	GND	${ }_{\text {(as 1) }}^{24 \mathrm{~V}}$	${ }_{\substack{\text { GND } \\ \text { Do }}}$	DO 2	${ }_{\substack{\text { GND } \\ \text { DO }}}$
				I									$\stackrel{\text { Termi }}{\text { SK Ti }}$	$\begin{aligned} & \text { al block } \\ & \text { TU-BUS } \end{aligned}$	of the and assig		Uner Unit ctions

Example for the connection of SK TU4-PBR to SK 200E

Looping of the 24 V supply voltage (terminals $\mathbf{1 1 / 1 5}$) is in principle possible, however, a maximum current load of 3A for the SK TU4-PBR(-...) must not be exceeded!

Detail of the M12 connections of the SK TU4-PBR-M12

The special wiring of the M12 round plug connectors enables the connection of both single and double sensors, which are equipped with normal M12 system plugs with standard sensor/actuator wiring.
If the M12 round plug connectors are used, the terminal block connections for the digital inputs (terminals 19, 20, 25, 26) must not be used.

Details of the control connections

Terminall Name	Function	Data	Description / wiring suggestion	Parameter
$1 \quad 24 \mathrm{~V} \text { PBR }$ 2	external 24 V supply (module, field and system bus level)	$\begin{aligned} & 24 \mathrm{VDC} \pm 20 \% \\ & \approx 900 \mathrm{~mA} \\ & \text { protected against reverse } \\ & \text { polarity } \\ & \text { Max. permissible current } \\ & \text { load: } 3 \mathrm{~A} \end{aligned}$	Connection for module supply voltage and 24 V source for the digital inputs (DIN1 to DIN4)	-
```\(3 \quad\) PBR B (incoming) 4 (outgoing)```	Bus + (red wire)   RxD/TxD-N	RS485 transfer	The use of a twisted, shielded two-	-
	Bus (green wire) RxD/TxD-P	technology	is strongly recommended	-
7 GND PBR   8	Data ground Bus			-
9 RTS	Ready to send			-
10 +5V PBR	5 V bus supply voltage	internal Profibus voltage supply	Note: Should not be used externally!	-
Potential separation				
11 24V	external 24V supply		Connection for module supply voltage and 24 V source for the digital inputs (DIN1 to DIN4)	-
12		As for terminal 1		
13				
$15 \quad \text { GND }$	Reference potential for digital signals			
17				-
18				
14 Sys+	System bus data cable +		System bus interface	-
16 Sys-	System bus data cable -			-
19 DIN1	Digital input 1 (//O Profibus DIN1)	Low 0V ... 5V   High 15V ... 30V $\mathrm{R}_{\mathrm{i}}=8.1 \mathrm{k} \Omega$   Input capacitance 10nF Scan rate 1ms   Inputs compliant with EN 61131-2, Type 1	Each digital input has a reaction time of 1 ms	P174
20 DIN3	Digital input 3 (I/O Profibus DIN3)			P174



Detailed information about operation via PROFIBUS DP can be found in the relevant supplementary manual BU0220.

- www.nord.com -


### 3.5.6 CANopen, SK TU4-CAO, ...-M12

Up to four connected frequency inverters can be managed by the internal CANopen module via CANopen (control, status messages, parameterisation and diagnosis).

- Baud rate: max. 1 MBaud
- Protocol: DS301 and DSP 4021
- $4 x$ digital inputs
- $2 x$ digital outputs
- DIP switches for: addressing, bus termination, baud rate
- Status LEDs: Module status, module error, bus status, bus error, Dig.
- Additional LEDs, M12 version: Dig. In 1-4, Dig. Out 1-2



## Control connections SK TU4-CAO(-...)

The double spring terminal block of the BUS -Adapter Unit is colour coded to indicate the three different potential levels .
A separate voltage source should be used to supply the DOs. However, it is also possible to implement the supply of the DOs by bridging the 24 V 0 and $\underline{G N D} 0$ with one of the terminals of the system bus level ( 24 V and GND). However, in this case it should be noted that this produces an increased risk of errors on the bus cables.
The sensors and actuators are connected to the terminal block. Alternatively, the SK TU4-CAO-M12 module enables connection of the digital I/Os via the M12 round plug connectors (Socket, 5-pin, A-coded) on the front of the module.
Double use of the inputs via the terminal block and the M12 round plug should be avoided.


Example for the connection of SK TU4-CAO to SK 200E


Looping of the 24 V supply voltage (terminals $\mathbf{1 1 / 1 5 \text { ) is in principle possible, however, a }}$ maximum current load of 3A for the SK TU4-CAO(-...) must not be exceeded!

## Detail of the M12 connections of the SK TU4-CAO-M12

The special wiring of the M12 round plug connectors enables the connection of both single and double sensors, which are equipped with normal M12 system plugs with standard sensor/actuator wiring.

If the M12 round plug connectors are used, the terminal block connections for the digital inputs (terminals 19, 20, 25, 26) must not be used.


Details of the control connections


Terminal/		Function	Data	Description / wiring suggestion	Parameter
Name					
21	GND	Reference potential for digital signals	As for terminal 15		-
23 24	24V	external 24V supply	As for terminal 11		-
25	DIN2	Digital input 2   (I/O CANopen DIN2)	Low 0V ... 5V   High 15V ... 30V $\mathrm{R}_{\mathrm{i}}=8.1 \mathrm{k} \Omega$   Input capacitance 10nF Scan rate 1ms	Each digital input has a reaction time of 1 ms   Inputs compliant with EN 61131-2, Type 1	P174
26	DIN4	Digital input 4 (I/O CANopen DIN4)			P174
$27$ $28$	GND	Reference potential for digital signals	As for terminal 15		-
	$24 \mathrm{~V}$	external 24V supply	As for terminal 11		-
Potential separation					
31	24 V o	external 24 V supply of the DOs	$24 \mathrm{VDC}-1+20 \%$   up to 1 A , according to load protected against reverse polarity	External supply voltage for digital outputs (DO1 and DO2)   If necessary, bridge to 24 V terminal	-
32	GND o	Reference potential for digital signals		External supply voltage for digital outputs (DO1 and DO2)   If necessary, bridge to GND terminal	-
33	DO1	Digital output 1 (I/O CANopen DO1)	$\begin{aligned} & \text { Low }=0 \mathrm{~V} \\ & \text { High: } 24 \mathrm{~V} \end{aligned}$	The digital outputs should be used	P175
34	DO2	Digital output 2 (I/O CANopen DO2)			P175
35 36	GND o	Reference potential for digital signals		External supply voltage for digital outputs (DO1 and DO2)   If necessary, bridge to GND terminal	-

Detailed information about operation via CANopen can be found in the relevant supplementary manual BU0260.

- www.nord.com -


### 3.5.7 DeviceNet, SK TU4-DEV, ...-M12

Up to four connected frequency inverters can be managed by the internal DeviceNet module via DeviceNet (control, status messages, parameterisation and diagnosis).

- Baud rate: Max. 500 kBaud
- Protocol: AC-Drive and NORD-AC
- $4 x$ digital inputs
- $2 x$ digital outputs
- DIP switches for: addressing, baud rate
- Status LEDs: Module status, module error, bus status, bus error, Dig.

- Additional LEDs, M12 version: Dig. In 1-4, Dig. Out 1-2



## Control connections SK TU4-DEV(-...)

The double spring terminal block of the BUS -Adapter Unit is colour coded to indicate the three different potential levels.
A separate voltage source should be used to supply the DOs. However, it is also possible to implement the supply of the DOs by bridging the 24 V o and GND o with one of the terminals of the system bus level ( 24 V and GND). However, in this case it should be noted that this produces an increased risk of errors on the bus cables.
The sensors and actuators are connected to the terminal block. Alternatively, the SK TU4-DEV-M12 module enables connection of the digital I/Os via the M12 round plug connectors (Socket, 5-pin, A-coded) on the front of the module.
Double use of the inputs via the terminal block and the M12 round plug should be avoided.


Example for the connection of SK TU4-DEV to SK 200E


Looping of the 24 V supply voltage (terminals $\mathbf{1 1 / 1 5}$ ) is in principle possible, however, a maximum current load of 3A for the SK TU4-DEV(-...) must not be exceeded!

## Detail of the M12 connections of the SK TU4-DEV-M12

The special wiring of the M12 round plug connectors enables the connection of both single and double sensors, which are equipped with normal M12 system plugs with standard sensor/actuator wiring.
If the M12 round plug connectors are used, the terminal block connections for the digital inputs (terminals 19, 20, 25, 26) must not be used.


Details of the control connections


Terminal/		Function	Data	Description / wiring suggestion	Parameter
Name					
21	GND	Reference potential for digital signals	As for terminal 15		-
23 24	24V	external 24V supply	As for terminal 11		-
25	DIN2	Digital input 2 (I/O DeviceNet DIN2)	Low 0V ... 5V   High 15V ... 30V $\mathrm{R}_{\mathrm{i}}=8.1 \mathrm{k} \Omega$   Input capacitance 10nF Scan rate 1ms	Each digital input has a reaction time of 1 ms   Inputs compliant with EN 61131-2, Type 1	P174
26	DIN4	Digital input 4 (/IO DeviceNet DIN4)			P174
$27$ $28$	GND	Reference potential for digital signals	As for terminal 15		-
	$24 \mathrm{~V}$	external 24V supply	As for terminal 11		-
Potential separation					
31	24 Vo	external 24 V supply of the DOs	$24 \mathrm{VDC}-1+20 \%$   up to 1 A , according to load protected against reverse polarity	External supply voltage for digital outputs (DO1 and DO2)   If necessary, bridge to 24 V terminal	-
32	GND o	Reference potential for digital signals		External supply voltage for digital outputs (DO1 and DO2)   If necessary, bridge to GND terminal	-
33	DO1	Digital output 1 (I/O DeviceNet DO1)	$\begin{aligned} & \text { Low }=0 \mathrm{~V} \\ & \text { High: } 24 \mathrm{~V} \end{aligned}$	The digital outputs should be used	P175
34	DO2	Digital output 2 (I/O DeviceNet DO2)			P175
35 36	GND o	Reference potential for digital signals		External supply voltage for digital outputs (DO1 and DO2)   If necessary, bridge to GND terminal	-

Detailed information about operation via DeviceNet can be found in the relevant supplementary manual BU0280.

- www.nord.com -


## 4 SK 200E displays and control

By the use of various modules for display, control and parameterisation, the NORDAC SK 200E can be easily adapted to a wide range of requirements.
Alphanumeric display and control modules (Section 4.1) can be used for simple commissioning. For more complex tasks, connection to a PC system and the use of Nord Con parameterisation software is available.
As supplied, without additional options, the diagnostic LEDs are externally visible. These signal the actual device status. 2 potentiometers and 8 DIP switches are provided in order to set the most important parameters. In this minimal configuration no other adapted parameters are stored in the plug-in EEPROM. The only exception is the data concerning operating hours, faults and fault circumstances. This data can be stored in the EEPROM.


SK 200E mounted on motor, top view
SK 200E not fitted, view from inside

All parameters can be conveniently accessed for reading or setting with the aid of an optional SimpleBox or ParameterBox (Section 4.1). The changed parameter data is stored in a non-volatile EEPROM memory. This provides the possibility of transferring data from one FI to another by plugging in the EEPROM.
In addition, up to 5 complete frequency inverter data sets can be stored and accessed in the ParameterBox. Connection between the SimpleBox or ParameterBox is by means of an RJ12-RJ12 cable.


### 4.1 Overview of external control devices



Module	Description	Data
SimpleBox Hand-held SK CSX-3H	Used for commissioning, parameterisation, configuration and control of the FI. Storage of the parameters is not possible.   Manual BU 0040 (www.nord.com)	4-digit, 7-segment LED display   IP20   RJ12-RJ12 cable (for connection to FI / Option)   Part No. 275281013
ParameterBox   Hand-held   SK PAR-3H	Used for commissioning, parameterisation, configuration and control of the FI. Storage of parameters is possible.   Manual BU 0040 (www.nord.com)	4 digit back-lit LCD display, keyboard Stores up to 5 complete FI data sets IP20   RJ12-RJ12 cable (for connection to FI / Option) USB-Cable (For connection to PC)   Part No. 275281014

Installing the control unit on the SK 200E:
Installation of the control unit is performed as follows:

1. Remove the protective caps from the RJ12 connectors.
2. Connect the RJ12-RJ12 cable between the control unit and the frequency inverter.
3. During normal operation after commissioning, it is essential to replace the protective caps and pay attention to sealing.
4. As long as one of the protective caps is open, take care that no dirt or moisture enters the device.


### 4.1.1 SimpleBox, SK CSX-3H

This option is used as a simple parameterisation, display and control tool for the SK 200E frequency inverter.

## Features

- 4-digit, 7-segment LED display
- Complete parameterisation of the frequency inverter.
- Direct control of a frequency inverter
- Displays the active parameter set during parameterisation and operation and the operating
 value set in P001.

After the SimpleBox has been connected and the mains switched on, horizontal lines appear in the 4-digit 7segment display. This display signals the operational readiness of the frequency inverter.
If a creep frequency value is pre-set in parameter P113, or a minimum frequency or setpoint value is pre-set in P104, the display flashes with this initial value.
If the frequency inverter is enabled, the display changes automatically to the operating value selected in parameter >Selection Display value< P001 (factory setting = current frequency).
The actual parameter set in use is shown by the 2 LEDs next to the display on the left in binary code.


The digital frequency setpoint is factory set to 0 Hz . To check whether the motor is working, a frequency setpoint must be entered with the key or a jog frequency via the respective parameter >Jog frequency< (P113).

Settings should only be made by qualified personnel, in strict compliance with the warning and safety information.

ATTENTION:The motor may start immediately after pressing the START key ${ }_{\text {! }}$

Functions of the SimpleBox:

	Starting the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A preset minimum frequency (P104) may at least be provided. Parameter >Interface< P509 and P510 must $=0$.
	Stopping the frequency inverter. The output frequency is reduced to the absolute minimum frequency (P505) and the frequency inverter shuts down.
7-segment LED display   4-digit	4 permanently displayed underscores ( _) indicate readiness for operation if there is no setpoint. If these underscores are flashing, the frequency inverter is not ready for operation (switchon lock, e.g. function "safe pulse block"), or there is, or was, an error. This must first be rectified.   When the frequency inverter is ready for operation any initial value (P104/P113 for keyboard operation) is indicated by a flashing display. This frequency is immediately displayed on being enabled.   During operation, the currently set operating value (selection in P001) or an error code (Section 6) is displayed.   During parameterisation, the parameter numbers or the parameter values are shown.
$\begin{gathered} \text { LEDs } \\ 1 \\ 2 \end{gathered}$	The LEDs indicate the actual operating parameter set in the operating display (P000) and the actual parameter set being parameterised during parameterisation. In this case the display is coded in binary form. 1 -   1 $-1$ 2   $=\mathrm{P} 2$ 2 $=\mathrm{P} 3$ = P4
	The motor rotation direction changes when this key is pressed. "Rotation to the left" is indicated by a minus sign. Attention!Take care when operating pumps. screw conveyors, ventilators, etc. The key may be locked with parameter P540.
	Press key to increase the frequency. During parameterisation, the parameter number or parameter value is increased
	Press the key to reduce the frequency. During parameterisation, the parameter number or parameter value is reduced.
(OK)	Press the "OK" key to store an altered parameter value, or to switch between parameter numbers or parameter values.   NOTE:   If a changed value is not to be stored, the key can be used to exit the parameter without storing the change.

## Control with the SimpleBox

The frequency inverter can only be controlled via the SimpleBox, if it has not previously been enabled via the control terminals or via a serial interface (P509 = 0 and P510 = 0).
If the START key is pressed, the frequency inverter changes to the operating display (selection P001). The frequency inverter supplies 0 Hz or a higher minimum frequency ( P 104 ) or jog frequency ( P 113 ) which has been set.


## Parameter set display:

The LEDs indicate the actual operating parameter set in the operating display (POOO) and the current parameter set being parameterised ( $\neq \mathrm{P} 000$ ). In this case the display is coded in binary form.
The parameter set can also be changed during operation via the parameter P100, if control is by means of the SimpleBox.

## Frequency setpoint:

The current frequency setpoint depends on the setting in the parameters jog frequency (P113) and minimum frequency ( P 104 ). This value can be altered during keyboard operation with the value keys $\boldsymbol{\nabla}$ permanently stored in P113 as the jog frequency by pressing the OK key ©.

## Quick stop:

A quick stop can be triggered by simultaneously pressing the STOP key $\square$ and the "Change direction key" $\bigcirc$.

## Parameterisation with the SimpleBox

The parameterisation of the FI can be performed in various operating states. All parameters can always be changed online. Switching to the parameter mode occurs in different ways depending upon the operating states and the enabling source.

1. If there is no enable (if necessary, press the STOP key $\left.{ }^{( }\right)$) it is possible to switch from display of the operating values to the parameterisation mode directly from the operating value display with the value keys $\boldsymbol{(})$ or $\boldsymbol{\nabla} \rightarrow \mathbf{P} \mathbf{0}_{-} / \mathbf{P} \mathbf{7}_{-}$
2. If an enable is present via the control terminals or a serial interface and the frequency inverter is producing an output frequency, it is also possible to switch to the parameterisation mode directly from the operating value display using the value keys $\boldsymbol{\bullet}$ or $\rightarrow \boldsymbol{P O}_{-} / \mathbf{P} \mathbf{7}_{-}$
3. If the FI has been enabled via the SimpleBox (START key $(\mathrm{D}$ ), the parameterisation mode can be accessed by pressing the START and ENTER keys ( $($ + © ) simultaneously.
4. Switching back to the control mode is achieved by pressing the START key .


## Changing parameter values

To access the parameter section, one of the value keys, $\nabla$ must be pressed. The display changes to the menu group display $\mathbf{P O}_{\ldots} \ldots \mathbf{P 7}_{7}$. After pressing the OK key © access to the menu group is obtained and the required parameter can be selected with the value keys.
All parameters are arranged in order in the individual menu groups in a continuous scroll pattern. It is therefore possible to scroll forwards and backwards within this section.
Each parameter has a parameter number $\rightarrow \mathbf{P \times x \mathbf { x }}$. The significance and description of the parameters starts in Section 6 "Parameterisation".

NOTE: $\quad$ Some parameters (e.g. P502) have additional levels (Arrays), in which further settings can be made, e.g.:


## Menu structure with the SimpleBox



To change a parameter value, the OK key © must be pressed when the relevant parameter number is displayed.
Changes can then be made using the VALUE keys or $\odot$ and must be confirmed with ©® to save them in the EEPROM and exit from the parameter.
As long as a changed value has not been confirmed by pressing OK, the value has not yet been stored in the frequency inverter.

During parameter changes, the display does not flash, so that the display is more legible.
If a change is not to be saved, the "DIRECTION" key $\bigcirc$ can be pressed to exit from the parameter.


### 4.1.2 ParameterBox SK PAR-3H

This option is for simple parameterisation and control of the frequency inverter, as well as the display of current operating settings and states.
Up to 5 Fl data sets can be stored and managed, stored and transferred with this device. This enables an efficient commissioning for serial applications.

## Features of the ParameterBox

- Illuminated, high resolution LCD graphics screen
- Large-screen display of individual operating parameters
- 6 language display
- Help text for error diagnosis

- 5 complete inverter data sets can be stored in the memory, loaded and processed
- Can be used for the simultaneous display of several operating values
- Standardisation of individual operating parameters to display specific system data
- Direct control of a frequency inverter


## Information from the ParameterBox

After plugging the ParameterBox onto the frequency inverter and switching on the mains for the first time, there is initially an enquiry as to the menu language, German or English. The required language is confirmed by pressing OK.
Then the ParameterBox automatically carried out a "bus scan", during which the connected frequency inverters are identified.
In the following display, the type of frequency inverter, its actual operating condition and the current status can be seen.
After the inverter has been enabled, the display mode changes to the 3 current operation values (frequency, voltage, current). The operating values displayed can be selected from a list of possible values (in the >Display< / > Values< menu).
The digital frequency setpoint (Jog frequency/minimum frequency) has a default setting of
OHz. To check whether the motor is working, a frequency setpoint must be entered with the


With the use of a ParameterBox SK PAR-3H this must never be simultaneously connected to the frequency inverter and the PC, as potential shifts may cause damage, especially to the PC. (See also Manual BU0040)

Functions of the ParameterBox

1	Graphic-capable, backlit LCD display for displaying operational values and parameters for the   connected frequency inverter and ParameterBox parameters.
display	
The menu levels and the individual menu items can be scrolled through with the SELECTION keys.	
The next higher level can be accessed by pressing the keys	

LCD display


## Menu structure

The menu structure consists of various levels, which are each arranged in a ring structure. The OK key moves the menu on to the next level. Pressing the SELECTION keys simultaneously moves the menu back one level.

$\geq$ Display< $(\mathrm{P} 11 \mathrm{xx}),>$ Administer Parameters $<(\mathrm{P} 12 \mathrm{xx})$ and $>$ Options $<(\mathrm{P} 13 \mathrm{xx})$ are purely ParameterBoxparameters and do not have direct influence on frequency inverter parameters.

Via the menu $>$ Parameterisation< the frequency inverter menu structure can be accessed, if necessary after selection of the object, if frequency inverter data sets are already stored in the ParameterBox.

The description of the frequency inverter parameters is in Section 6 of this manual.

## Select language, brief description

The following steps must be carried out to change the menu language used in the ParameterBox display. On switching on the ParameterBox for the first time, "German" or "English" will be offered for selection. The selection is made by pressing the selection keys (arrow R/L) and confirming with the OK key.

In the following, "English" was selected on switching on for the first time. After this selection the following displays should appear (varies depending upon output and options).


## Controlling the frequency inverter with the ParameterBox

The frequency inverter can only be completely controlled via the ParameterBox if the parameter >Interface< (P509) is set to the >Control terminal or Keyboard< function (=0) (factory setting) and the inverter is not enabled via the control terminal.


Note: If the frequency inverter is enabled in this mode, then the parameter set is used, which is selected for this frequency inverter in the Menu >Parameterisation< ... >Basic parameters< ... under Parameters >Parameter set<.

Attention:Following the START command, the frequency inverter may start up immediately with a preprogrammed frequency (minimum frequency P104 or jog frequency P113).

## Parameterisation with the ParameterBox

The parameterising mode is entered by selecting the group >Parameterisation< in menu level 1 of the ParameterBox and confirming this with the OK key. The parameter level of the connected frequency inverter is now visible.


## Screen layout during parameterisation

If the setting of a parameter is changed, then the value flashes until it is confirmed with the OK key. In order to retain the default settings for the parameter being edited, both VALUE keys must be pressed simultaneously. Even in this case, the setting must be confirmed with the OK key in order for the change to be saved.
If the change is not to be saved, then pressing one of the SELECTION keys will call up the previously stored value and pressing a SELECTION key again will exit the parameter.


NOTE: The lower line in the display is used to display the current status of the box and the frequency inverter being controlled.

NOTE: Some parameters (e.g. P502) have additional array levels, in which further settings can be made. The required array level must first be selected (see parameterisation, Section 6) and confirmed with OK. The required parameter setting can now be made.


### 4.1.3 ParameterBox parameters

The following main functions are assigned to the menu groups :

Menu group	No.	Master function
Display	(P10xx):	Selection of operating values and display layout
Parameterisation	(P11xx):	Programming of the connected inverter and all storage media
Parameter management	$(\mathbf{P 1 2 x x}):$	Copying and storage of complete parameter sets from storage media and   inverters
Options	(P14xx):	Setting the ParameterBox functions and all automatic processes

## Display

Parameter	Setting value / Description / Note
P1001   Bus scan	A bus scan is initiated with this parameter. During this process a progress indicator is shown in the display.   After a bus scan, the parameter is "Off".   Depending on the result of this process, the ParameterBox goes into the "ONLINE" or "OFFLINE" operating mode.
P1002   FI selection	Selection of the current item to be parameterised/controlled.   The display and further operating actions refer to the item selected. In the inverter selection list, only those devices detected during the bus scan are shown. The current object appears in the status line.   Value range: FI, S1 ... S5
P1003   Display mode	Selection of the operating values of the ParameterBox (Selection value(s) in (P1004))    Standard: Any 3 values next to each other   List: Any 3 values listed with units   Large display: 1 value (any) with unit   ControlBox: 1 (any) value without unit (Selection value in (P001) of the FI)
P1004   Values for display	Selection of a display value for the actual value display of the ParameterBox. (See also BU0040)   The value selected is placed in the first position of an internal list for the display value and is then also used in the Large Display mode.
P1005   Standardisation factor	The first value in the list displayed is scaled using the standardisation factor. If this standardisation factor varies from a value of 1.00 , then the units of the scaled value are hidden in the display.   Value range: -327.67 to +327.67 ; resolution 0.01

## Parameterisation

Parameter	Setting value / Description / Note
P1101	Selection of the object to be parameterised.   Object selectionThe ongoing parameterisation process relates to the object selected. Only the devices and   storage objects detected during the bus scan are displayed in the selection list. If only one   frequency inverter is connected and no storage address occupied, this parameter is not   displayed!   Value range: FI, S1 ... S5

Parameter management

Parameter	Setting value I Description / Note
P1201	Selection of the actual source object to be copied.   In the selection list, only the frequency inverters and storage media detected during the bus   scan are shown.   Value range: FI, S1 ... S5
P1202	Selection of actual target object to copy.   In the selection list, only the frequency inverters and storage media detected during the bus   scan are shown.   Value range: FI, S1 ... S5
P1203 - Target	This parameter triggers a transfer process, whereby all the parameters selected in >Copy -   Source are transferred to the object specified in the >Copy - Target< parameter.   While data is being overwritten, an information window with acknowledgement appears .   The transfer starts after acknowledgement.
Copy - Start	In this parameter, the default settings are written to the parameters of the selected item.   This function is particularly important when editing storage objects. It is only via this   parameter that a hypothetical frequency inverter can be loaded and edited with the   ParameterBox.   Value range: FI, S1 ... S5
Load default values	

## Options

Parameter	Setting value I Description / Note
P1301	Selection of languages for operation of the ParameterBox   Available languages:   Lerman   French$\quad$English   Spanish
P1302	Selection of the operating mode for the ParameterBox   Offline:   The ParameterBox is operated autonomously. The inverter data set is not accessed. The   storage objects of the ParameterBox can be parameterised and managed.   Online:   A frequency inverter is located at the interface of the ParameterBox. The frequency inverter   can be parameterised and controlled. On switchover to the "ONLINE " mode, a bus scan is   automatically started. The FI parameters are not yet loaded.   Pc Slave:   For connection to a PC with NORDCON software installed.
P1303	Setting the switch-on characteristics.   Off:   A bus scan is not carried out, the frequency inverters connected before the switch-off are   located after switching on.   On:   A bus scan is automatically implemented when the ParameterBox is switched on.
P1304	Contrast setting of the ParameterBox display   Value range: 0\% ... 100\%; Resolution 1\%
Contrast	The user can set up a password in this parameter.   If a value other than 0 has been entered in this parameter (default setting), then the settings   of the ParameterBox or the parameters of the connected inverter cannot be altered.
P1305	


Parameter	Setting value / Description / Note
P1306	If the >Password< function is to be reset, the password selected in the >Set Password<   parameter must be entered here. If the correct password is selected, all of the   ParameterBox functions and the parameters of the connected frequency inverter can be   used again.   NOTE: With the master-password '65' the current password is displayed and can be   confirmed with the OK key.
P1307	With this parameter the ParameterBox can be reset to the default setting. All ParameterBox   settings and the data in the storage media will be deleted.
Reset Box parameter	Displays the software version of the ParameterBox. In case of service enquiries by   telephone, please have this at hand.
Software version	

### 4.1.4 ParameterBox error messages

Display   Error	Cause   > Remedy
Communication error	
200   INCORRECT PARAMETER NUMBER	These error messages are due to EMC interferences or differing software versions of the participants.   > Check the software version of the ParameterBox and that of the connected frequency inverter.   > Check the cabling of all components, regarding possible EMC interference
201   PARAMETER VALUE CANNOT BE CHANGED	
202   PARAMETER OUTSIDE VALUE RANGE	
203   FAULTY SUB INDEX	
204   NO ARRAY PARAMETERS	
205   WRONG PARAMETER TYPE	
206   INCORRECT RESPONSE RECOGNITION USS INTERFACE	
207   USS INTERFACE CHECKSUM ERROR (RS485)	Communication between frequency inverter and ParameterBox is faulty (EMC), safe operation cannot be guaranteed.   Check the connection to the frequency inverter. Use a shielded cable between the devices. Route the BUS leads separately from the motor cables.
208   FAULTY STATUS RECOGNITION USS INTERFACE (RS485)	Communication between frequency inverter and ParameterBox is faulty (EMC), safe operation cannot be guaranteed.   Check the connection to the frequency inverter. Use a shielded cable between the devices. Route the BUS leads separately from the motor cables.
209_1   INVERTER DOES NOT RESPOND	The ParameterBox is waiting for a response from the connected frequency inverter. The waiting time has elapsed without a response being received.   Check the connection to the frequency inverter. The settings of the USS parameters for the frequency inverter have been changed during operation.


Display   Error	Cause   > Remedy
Identification errors	
$220$   UNKNOWN DEVICE	Device ID not found. The connected inverter is not listed in the database of the ParameterBox; no communication can be established.   ParameterBox is too old for the FI.   Please contact your Getriebebau Nord Representative.
221   SOFTWARE VERSION NOT RECOGNISED	The software version was not found. The software of the connected frequency inverter is not listed in the ParameterBox database, no communication can be established.   Please contact your Getriebebau Nord Representative.
$222$   CONFIGURATION STAGE NOT RECOGNISED	An unknown component has been detected in the frequency inverter (Customer interface).   Please check the components installed in the frequency inverter   If necessary, check the software version of the ParameterBox and the frequency inverter.
223   BUS CONFIGURATION HAS CHANGED	After restoring the last Bus configuration, a device is reported that is different from the one stored. This error can only occur if the parameter >Auto. Bus Scan< is set to OFF and another device has been connected to the ParameterBox.   Activate the Automatic Bus Scan function.
224   DEVICE NOT SUPPORTED	The inverter type entered in the ParameterBox is not supported!   The ParameterBox cannot be used with this inverter.
$225$   THE CONNECTION TO THE INVERTER IS BLOCKED	Access to a device that is not online (previously Time Out error).   > Carry out a bus scan via the parameter >Bus Scan< (P1001).
ParameterBox operating error	
$226$   SOURCE AND TARGET ARE DIFFERENT DEVICES	Copying objects of different types (from / to different inverters) is not possible.
227   SOURCE IS EMPTY	Copying of data from a deleted (empty) storage medium
$228$   THIS COMBINATION IS NOT PERMITTED	Target and source for the copying function are the same. The command cannot be executed.
229   THE SELECTED ITEM IS EMPTY	Parameterisation attempt of a deleted storage medium
230   DIFFERENT SOFTWARE VERSIONS	Warning:   Copying objects with different software versions can cause problems when transferring parameters.
231   INVALID PASSWORD	Attempt to alter a parameter without a valid Box password being entered in parameter >Box Password< P 1306.
232   BUS SCAN ONLY WHEN IN MODE: ONLINE	A bus scan (search for a connected frequency inverter) is only possible when in ONLINE mode.


Display   Error	Cause   > Remedy
Warnings	
240 OVERWRITE DATA?   $\rightarrow$ YES	These warnings indicate that there is a possibly significant change which needs additional confirmation.   Once the next procedure has been selected, it must be confirmed with the "OK" key.
241   DELETE DATA?   $\rightarrow$ YES	
242 MOVE SOFTWARE VERSION? $\rightarrow \text { NEXT }$   CANCEL	
243 MOVE SERIES?   $\rightarrow$ NEXT CANCEL	
244   DELETE ALL DATA?   $\rightarrow$ YES	
Inverter control error	
250   this function is not enabled	The required function is not enabled in the parameter > Interface< of the frequency inverter.   Change the value of the parameter >Interface< of the connected inverter to the required function. More detailed information can be obtained from the operating instructions for the frequency inverter.
$251$   CONTROL COMMAND WAS NOT SUCCESSFUL	The control command cannot be implemented by the frequency inverter, as a higher priority function, e.g. Quick stop or an OFF signal to the control terminals of the frequency inverter is present.
252   CONTROL OFFLINE NOT POSSIBLE	Call up of a control function in Offline mode.   Change the operating mode of the ParameterBox in the parameter >Operating Mode< P1302 to Online and repeat the action.
253   ERROR ACKNOWLEDGEMENT NOT SUCCESSFUL	The acknowledgement of an error at the frequency inverter was not successful, the error message remains.
Error message from inverter	
"ERROR NO. FROM INVERTER"   INVERTER FAULT   "INVERTER FAULT TEXT"	A fault with the number displayed has occurred in the inverter. The inverter error number and text are displayed.

## 5 Commissioning, SK 200E

The SK 200E inverter series can be commissioned in various ways:
a) By means of the (internal) DIP switches and the (externally accessible) potentiometer, the SK 200E can be configured for simple conveyor applications. Various LEDs are provided for diagnostic purposes. In this case, no additional options are required; the FI only needs to be supplied with mains voltage and a 24 V control voltage. For control (enable regulator, fixed frequencies, setpoint values), up to 4 digital inputs and 2 potentiometers are available.
In this configuration the plug-in EEPROM is not required.
b) A convenient and comprehensive solution is provided by commissioning with software support. Here, a PC with an RS232/458 interface or a SimpleBox/ParameterBox may be used. The connection to the SK 200E is made via the RJ12 socket on the top. A suitable cable for connection to a PC is available.
Here, the parameterised data is stored in the plug-in EEPROM. This must therefore always remain plugged in during operation.
c) The motor data for the SK 200E is always pre-set to the standard values of a motor with the same power as the frequency inverter.

## ATTENTION



## DANGER TO LIFE!

The frequency inverter is not equipped with a line main switch and is therefore always live when connected to the power supply. Live voltages may therefore be connected to a connected motor at standstill.


For commissioning standard applications, a limited number of the frequency inverter inputs and outputs (physical and I/O bits) have predefined functions. These settings may need to be changed (Parameters (P420), (P434), (P480), (P481)).

### 5.1 Minimal configuration without options

For minimum effort for the commissioning and control, the SK 200E can be operated in its condition as delivered. All that is needed is to provide the FI with mains voltage and a 24 V control voltage. This can be provided by the operator of the machine, or an optional module (SK CU4-24V-xxx-B, Section 3.4.1) can be used.


The adjustment of the setpoint values is made via the potentiometer P1, which is integrated in the cover of the SK 200E (Section 5.1.3). In addition, the frequency ramps can be adjusted with P2.
Enabling of the regulator is carried out with the switch S1.
The PTC input must be bypassed, if a motor with PTC is not available.

### 5.1.1 Quick commissioning

## Connection

If a 4-pole standard motor is to be controlled by an SK 200E series frequency inverter of the same power, it is possible to operate the frequency inverter without any aids for test purposes.

The only prerequisite for this is the correct connection of the mains and motor cables to the appropriate terminals (PE, L1, N (/L2, L3) and $U, V, W$ ) of the frequency inverter (Section 2.7), and their supply with a 24 V DC control voltage (Connection to terminals 44/40 (Section 2.8))


Illustration above: Control cable connections Illustration right: Mains / motor cable connections


## Mains unit

If an $\mathrm{SK} x \mathrm{U} 4-\ldots-24 \mathrm{~V}$ is used to provide the 24 V control voltage, this must be connected as described in Section 3.4.1 or 3.5.2 .

## DIP switches

For test operation the DIP switches 1 to 5 of the frequency inverter must be set to the "OFF" position (Section 5.1.2) and the digital input DIN1 (terminal 21) must be hard-wired to the 24 V control voltage (terminal 44).

## Control

Enabling is carried out as soon as the inverter's own setpoint potentiometer (Potentiometer P1, Section 5.1.3) is moved from the 0\% position.
The setpoint can be adjusted to the requirements by further continuous adjustment of the potentiometer.
Resetting the setpoint to $0 \%$ sets the frequency inverter into "Standby" status.
Stepwise adjustment of the ramp times within defined limits is also possible with the aid of potentiometer P2 (Section 5.1.3)


NOTE	This setting method is not suitable for the implementation of a so-called "automatic start with mains".
	In order to use this function, it is essential that parameter (P428) "Automatic Start" is set to the function "ON" (Section 6) Adjustment of parameters is possible with the aid of a ParameterBox (SK xxx-3H) (Section 4.1) or with the NordCon software (Windows PC and adapter cable required).

## Normal operation

In contrast to the configuration method for test operation described above, it is recommended that a Potentiometer Unit (SK CU4-POT) is used for simple standard operation. In combination with an integrated mains unit (SK CU4-...-24V) a completely autonomous solution can be implemented with only one mains cable (1~ / 3~ according to the version), and a suitable speed and direction control can be ensured (See connection example below).
This configuration method also provides the possibility of setting the frequency inverter to start automatically with "Mains On", by parameterising (P428).

## Connection plan and parameterisation of SK CU4-POT, example



DIP switch settings:
DIP3 $=$ off, DIP4 $=$ on, DIP5 $=$ off (Section 5.1.2)
or
recommended
parameter setting, DIP1-8 = off: $\quad P 400[07]=1 \quad P 420[02]=2$
P 420 [01] $=1 \quad \mathrm{P} 420$ [03] $=26$

### 5.1.2 DIP switch configuration

The DIP switches provide the possibility of carrying out commissioning without additional control units. Additional settings are made using the potentiometer on the top of the frequency inverter.
As supplied, all DIP switches are at the "Off" position, which corresponds to control via the digital inputs (see Section 5.1). The frequency setpoint value is adjusted via P1 and P2.

No. Bit	DIP switch			
$\begin{aligned} & 8 \\ & 2^{7} \end{aligned}$	Int Rerake Internal brake resistor	off	Behaviour corresponding to P555, P556, P557	
		on	Behaviour corresponding to the brake resistor used	
7	60Hz*   50/60Hz-operation	off	Motor data corresponding to the rated power of the FI in kW relative to 50 Hz , fmax $=50 \mathrm{~Hz}$	
$2^{6}$		on	Motor data corresponding to the rated power of the Fl in hp relative to $60 \mathrm{~Hz}, \mathrm{fmax}=60 \mathrm{~Hz}$	
$\begin{aligned} & 6 \\ & 2^{5} \end{aligned}$	V/F	off	VFC regulation corresponding to P211/P212	
	Regulating process	on	V/f curve ( $\Rightarrow$ P211=0 and P212=0)	
	I/O   Potentiometer function, digital inputs and AS interface	off	off Corresponding to P420 [1-4] and P400 [1-2] or P480 [1-4] and P481 [1-4]	
$5 / 4$		off	on	Further details in the next table. (depends on the DIP3 "BUS")
		on on	off on	
	BUS	off	Corresponding to P509 and P510 [1] [2]	
$2^{2}$	Source control word and setpoint value	on	System bus ( $\Rightarrow$ P509=4 and P510=4)	
	ADR System busaddress/ baud rate	off	off	Corresponding to P514 and 515 [32, 250kBaud]
$\underset{2^{1 / 0}}{2 / 1}$		off   on on	on   off on	Address 34, 250kBaud   Address 36, 250kBaud   Address 38, 250kBaud

*) A changed setting is applied the next time the mains is switched on. Existing settings in parameters P201-P209 and P105 are overwritten!

SK 200E, internal view


## FACTORY SETTING, AS DELIVERED!

*) As delivered, all DIP switches are in the "off" position. Control is by means of the digital control signals (P420 [01]-[04]) and the potentiometers P1 and P2 integrated in the FI (P400 [01]-[02]).

[^5]Details of DIP switches 5/4 and 3
Applies to devices SK 205E, SK 215E (without AS interface on board)

DIP			Functions as per the list of digital functions (P420)				Functions as per the list of analog functions (P400)	
5	4	3	Dig 1	Dig 2	Dig 3	Dig 4**	Poti 1	Poti 2
off	off	off	$\frac{(\mathrm{P} 420[01])^{\star}}{\{01\} \text { "Enable R" }}$	$\frac{(\mathrm{P} 420[02])^{*}}{\{02\} \text { "Enable L" }}$	$\begin{aligned} & (\text { P420 [03])* } \\ & \{04\} \text { "Fixed freq. 1" } \\ & =5 \mathrm{~Hz}(\text { P465[01]) } \end{aligned}$	(P420 [05])*   \{04\} "Fixed freq. 2"   $=10 \mathrm{~Hz}$ (P465[02])	$\frac{(\mathrm{P} 400[01])^{*}}{\{01\} \text { " F setpoint" }}$	$\frac{(\mathrm{P} 400[02])^{*}}{\{15\} \text { "Ramp" }}$
off	on	off	\{01\}"Enable R"	\{02\} "Enable L"	$\{26\}$ "F setpoint"	\{12\} "Quit"	\{05\} "F max"	\{04\} "F min"
on	off	off	\{45\} "3-on"	\{49\} "3-off"	\{47\} "Freq. +"	\{48\} "Freq. -"	\{05\} "F max"	\{15\} "Ramp"
on	on	off	\{50\} „F Arr Bit0 $=5 \mathrm{~Hz}$ (P465[01])	\{51\} „F Arr Bit1"   $=10 \mathrm{~Hz}$ (P465[02])	$\{52\} \text { „F Arr Bit2" }$ $=20 \mathrm{~Hz}(\mathrm{P} 465[03])$	\{53\} „F Arr Bit3"   $=35 \mathrm{~Hz}$ (P465[04])	\{05\} "F max"	\{15\} "Ramp"
off	off	on	The functions of the digital inputs are inactive (control via system bus), however, the settings made in parameters ( P 420 [01 ... 04]) result in the activation of the correspondingly parameterised input, for the functions designated with ... ${ }^{2}$ in the function list (e.g.: $\{11\}^{2}=$ "Quick stop).				$\frac{(\mathrm{P} 400 \text { [01] })}{\{01\} \text { " F setpoint" }}$	$\frac{(\mathrm{P} 400[02])}{\{15\} \text { "Ramp" }}$
			$\frac{(\mathrm{P} 420[01])}{\text { no function }}$	$\frac{(\mathrm{P} 420[02])}{\text { no function }}$	$\begin{aligned} & \frac{(P 420 ~[03])}{\{04\}} \text { Fixed freq. 1" } \\ & =5 \mathrm{~Hz}(\mathrm{P} 465[01]) \end{aligned}$	$\begin{aligned} & \text { (P420 [04]) } \\ & \{05\} \text { Fixed freq. 2" } \\ & =10 \mathrm{~Hz} \text { (P465[02]) } \end{aligned}$		
off	On	On	\{14\} "Remote control"	"Encoder track A"	"Encoder track B"	\{01\}"Enable R"	\{01\} "F setpoint"	\{05\} "F max"
on	off	On	\{14\} "Remote control"	\{01\}"Enable R"	\{10\} "Block"	\{66\} "Release brake"	\{01\} "F setpoint"	\{05\} "F max"
on	on	On	\{14\} "Remote control"	\{51\} „F Arr Bit1"   $=10 \mathrm{~Hz}$ (P465[02])	\{52\} „F Arr Bit2"   $=20 \mathrm{~Hz}$ (P465[03])	\{53\} „F Arr Bit3"   $=35 \mathrm{~Hz}$ (P465[04])	\{05\} "F max"	\{15\} "Ramp"
	Expla	tion:	values underlined in b curly brackets\}   Default setting only if available (Device	$\begin{aligned} \text { ackets })= & \text { (relevant pe } \\ = & \{\text { Function }\} \\ & (\text { See also }\} \end{aligned}$   ces without function '	ameter / source of funct g.: $\{01\}$ "Enable Right ction 6: $\rightarrow$ Table behind afe Stop")	tion), e.g.: Parameter d parameter (P420), (P	(P420[01])   400) or (P434))	

## Applies to devices SK 225E, SK 235E (with AS interface on board)

DIP			Functions as per the list of digital functions (P420)				Functions as per the list of digital outputs (P434)			
5	4	3	ASi   In1	$\begin{aligned} & \text { ASi } \\ & \text { In2 } \end{aligned}$	$\begin{aligned} & \text { ASi } \\ & \text { In3 } \end{aligned}$	$\begin{aligned} & \text { ASi } \\ & \text { In4 } \end{aligned}$	ASi   Out1	ASi   Out2	$\begin{gathered} \text { ASi } \\ \text { Out3 } \end{gathered}$	ASi   Out4
off	off	off	$\begin{aligned} & \frac{(\mathrm{P} 480}{\{0101])^{*}} \\ & \mathrm{R}^{2} \end{aligned}$	$\begin{aligned} & \frac{(\mathrm{P} 480[02])^{*}}{\{02\}^{2} \text { "Enable }} \\ & \text { L" } \end{aligned}$	$\begin{aligned} & \frac{(P 480[03])}{\text { \{04\} Fixed }} \\ & \text { freq. 1" } \\ & =5 \mathrm{~Hz}(\text { P465[01]) } \end{aligned}$	$\frac{\left(\mathrm{P} 480[041)^{*}\right.}{\{12\} \text { "Quit" }}$	$\frac{(\text { P481 [01])* }}{\{07\} \text { "Error" }}$	(P481 [02])*   \{18\} "Standby"	"Digln1"	"Digln2"
off	on	off	\{04\} "Fixed freq. 1" $=5 \mathrm{~Hz}$ (P465[01])	\{05\} "Fixed freq. 2"   =10Hz (P465[02])	\{06\} "Fixed freq. ${ }^{\prime \prime}$   $=20 \mathrm{~Hz}$ (P465[03])	\{07\} "Fixed freq. 4"   $=35 \mathrm{~Hz}$ (P465[04])	\{07\} "Error"	\{18\} "Standby"	"Digln1"	"Digln2"
On	off	off	\{01\}"Enable R"	\{02\} "Enable L"	\{47\} "Freq. +"	\{48\} "Freq. -"	\{07\} "Error"	\{18\} "Standby" '\|	"Digln1"	"Digln2"
On	on	off	\{51\} "F Arr B1"   $=10 \mathrm{~Hz}$ (P465[02])	\{52\} "F Arr B2"   $=20 \mathrm{~Hz}$ (P465[03])	\{53\} "F Arr B3"   $=35 \mathrm{~Hz}$ (P465[04])	\{14\} "Remote control"	\{07\} "Error"			"Digln2"
			The functions of the digital inputs are inactive (control via system bus), however, the settings made in parameters (P480 [01 ... 04]) result in the activation of the correspondingly parameterised bits, for the functions designated with ..2 in the function list (e.g.: \{11\} ${ }^{2}=$ "Quick stop).				(P481 [01])	(P481 [02])		
	Of	On	$\frac{(\mathrm{P} 480[01]) \text { no }}{\text { function }}$	(P480 [02])   no function	$\begin{aligned} & \frac{\text { (P480 [031) }}{\{04\} \text { Fixed }} \\ & \text { freq. 1" } \\ & =5 \mathrm{~Hz}(\text { P465[01]) } \end{aligned}$	$\frac{(P 480[04])}{\{12\} \text { "Quit" }}$				
off	on	on	\{14\} "Remote control"	\{04\} "Fixed freq. 1"   $=5 \mathrm{~Hz}$ (P465[01])	\{05\} "Fixed freq. 2" $=10 \mathrm{~Hz}$ (P465[02])	$\begin{aligned} & \text { \{06\} "Fixed } \\ & \text { freq. 3" } \\ & =20 \mathrm{~Hz}(\text { (P465[03]) } \end{aligned}$	\{07\} "Error"	\{18\} "Standby'	"Digln1"	"Digln2"
On	off	on	\{14\} "Remote control"	\{01\}"Enable R"	\{47\} "Freq. +	\{48\} "Freq. -"	\{07\} "Error"	\{18\} "Standby"	"Digln1"	"Digln2"
On	on	On	\{14\} "Remote control"	\{50\} "F Arr B0" $=5 \mathrm{~Hz}$ (P465[01])	\{51\} "F Arr B1"   $=10 \mathrm{~Hz}$ (P465[02])	\{52\} "F Arr B2"   $=20 \mathrm{~Hz}$ (P465[03])	\{07\} "Error"	\{18\} "Standby"	"Digln1"	"Digln2"

[^6]
### 5.1.3 Potentiometers P1 and P2 and diagnostic LEDs

The enable signal (Start/Stop) is implemented with the external switch. The setpoint value can be fixed with the integrated potentiometer P1. The potentiometer P2 is available for selection of the start-up and braking ramps.


Diagnostic LEDs (5.1.3.1)

1	yellow	Digital output
2	yellow	Digital input 1
3	yellow	Digital input 2
4	yellow	Digital input 3
5	yellow	Digital input 4
6	yellow	Motor PTC
7	yellow	Brake chopper active
8	green	Bech. brake status
9	red	Bus Status 2
10		

Potentiometers and LEDs (5.1.3.2)

P 1 (continuous)			P 2 (stepped)	
$0 \%$	$\mathrm{P} 102 / 103$	P 105	-	-
$10 \%$	0.2 s	10 Hz	1	$\mathrm{P} 102 / 103$
$20 \%$	0.3 s	20 Hz	2	0.2 s
$30 \%$	0.5 s	30 Hz	3	0.3 s
$40 \%$	0.7 s	40 Hz	4	0.5 s
$50 \%$	1.0 s	50 Hz	5	0.7 s
$6 \%$	2.0 s	60 Hz	6	10 Hz
$60 \%$	3.0 s	70 Hz	7	2.0 s
$70 \%$	5.0 s	80 Hz	8	3.0 s
$80 \%$	7.0 s	90 Hz	9	5.0 s
$90 \%$	10.0 s	100 Hz	10	7.0 s
$100 \%$			30 Hz	

The function of P1 and P2 depends on DIP $4 / 5$ (Section 5.1.1). The meaning changes according to the setting.

As standard, P1 sets the setpoint value of $0-100 \%$ and P 2 sets the ramp from $0.2-7 \mathrm{sec}$.

LED FI	green   red	Ready / Load (flashing)   Error / Error number (flashing)
LED AS-I	green   red	AS Interface status (dual LED)

### 5.1.3.1 Diagnostic LEDs

Diagnostic LEDs				
1	yellow	Digital output	Indicates high signal at digital output	
2	yellow	Digital input 1	Indicates high signal at digital input	
3	yellow	Digital input 2		
4	yellow	Digital input 3		
5	yellow	Digital input 4		
6	yellow	Motor PTC	High signal indicates overheating of motor	
7	yellow	Brake chopper active	Indicates activity/load of brake chopper	
8	yellow	Mech. brake status	Indicates control of mechanical brake	
9	green	BUS Status 1	off flashing 0.25 s on	No active process data communication   System bus in state "BUS Warning"   Process data communication on BUS   At least one telegram must be received within one second   SDO transfer is not indicated
10	red	BUS Status 2	off   flashing   0.25 s   flashing 0.75 s   on	No error   Monitoring error P120 or P513 $\Rightarrow \text { E10.0 / E10.9 }$   Error in an external system bus module $\Rightarrow \text { E10.2 / E10.3 }$   Bus module $\rightarrow$ Timeout on the external BUS (E10.2)   System bus module has a module error (E10.3)   System bus in state "BUS off"

### 5.1.3.2 Status LEDs

Status LEDs				
LED FI	green red	Ready / Load Error / Error Number	off green on   green flashing   alternating   green/red   green on red flashing slowly red on/ flashing	FI not ready, no mains/control voltage   Fl ready and not in overload mode   0.5 Hz flashing frequency:   Standby   2 Hz flashing frequency:   switch-on disabled   0.5 Hz flashing frequency:   Warning   $1 \mathrm{~Hz}-25 \mathrm{~Hz}$ flashing frequency:   Fl switched on and in overload mode. Flashing frequency increases with increased overload.   $24 v$ control voltage available, but no mains voltage. FI not ready for operation.   Error: the flashing frequency indicates the error number.
LED AS-I	green red	AS Interface Status	off green red alternating green/red	No (PWR) AS interface voltage to the module   Normal operation   No data exchange possible (possible causes: Slave address $=0$, master in STOP mode, slave not in LPS, slave with incorrect IO/ID, Reset active)   Peripheral error

### 5.2 Factory settings

All frequency inverters supplied by Getriebebau NORD are pre-programmed with the default setting for standard applications with 4 pole standard motors (same voltage and power). For use with motors with other powers or number of poles, the data from the rating plate of the motor must be input into the parameters P201...P207 under the menu item >Motor data<.

NOTE: All motor data can be pre-set using the parameter P200. After successful use of this function, this parameter is reset to $0=$ no change! The data is loaded automatically into parameters P201...P209 - and can be compared again with the data on the motor rating plate.


RECOMMENDATION: For the correct operation of the drive unit, it is necessary to input the motor data according to the rating plate as precisely as possible. In particular, an automatic stator resistance measurement using parameter P220 is recommended.
In order to automatically determine the stator resistance, P220 = 1 must be set and confirmed by pressing "OK". The value calculated for the line resistance (dependent upon P207) will be saved in P208.
ATter a default setting "Enable Left" or "Enable Right", the digital inputs DIN2 and DIN3 are
additionally assigned for the evaluation of an HTL incremental encoder. The encoder evaluation
function cannot be switched off. This means that with the use of an incremental encoder, it is
essential to set parameters (P420[-02]) and (P420[-03]) to "no function". (For using the DIP-
switches of the frequency inverter for parametrisation, please lock at section 5.1.2 .)

### 5.3 KTY84-130 connection

The current vector regulation of the SK 200E series can be further optimised by the use of a KTY84-130 temperature sensor $\left(\mathrm{R}_{\operatorname{th}\left(0^{\circ} \mathrm{C}\right)}=500 \Omega, \mathrm{R}_{\operatorname{th}\left(100^{\circ} \mathrm{C}\right)}=1000 \Omega\right)$. By continuous measurement of the motor temperature, the highest precision of regulation by the frequency inverter and the associated optimum speed precision of the motor is achieved at all times. As the temperature measurement starts immediately after the (mains) switch-on of the frequency inverter, the frequency inverter provides immediate optimum control, even if the motor has a considerably increased temperature after an intermediate "Mains off / Mains on" of the frequency inverter.
A KTY-84 sensor can only be connected to one of the two analog inputs of the l/O-extension module (SK xU4-IOE).

## Connection example

(Assignment of connections, Analog Input 2)

## SK CU4-IOE

AOUT	1OVA	AIN2+	AIN2-	OV
17	11	16	15	12

SK TU4-IOE

(Illustration shows a section of the terminal blocks)

## Parameter settings (Analog Input 2)

For the function of the KTY84-130, the following parameters must be set.

1. The motor data P201-P207 must be set according to the identification plate.
2. The motor stator resistance P208 is determined at $20^{\circ} \mathrm{C}$ with $\mathbf{P} 220=\mathbf{1}$
3. Function of Analog Input 2, P400 [-04] = $\mathbf{3 0}$ (motor temperature)
4. Analog Input 2 mode, P401 [-02] = 1 (negative temperatures are also measured) (from firmware version: V1.2)
5. Matching of Analog Input 2: $\mathrm{P} 402[-02]=1.54 \mathrm{~V}$ and $\mathrm{P} 403[-03]=2.64 \mathrm{~V}$ (with $\mathrm{R}_{\mathrm{V}}=2.7 \mathrm{kOhm}$ )
6. Matching of time constants: $\mathbf{P 1 6 1}[-02]=\mathbf{4 0 0 m s}$ (Filter time constant is at a maximum) Parameter ( P 161 ) is a module parameter. This cannot be set on the frequency inverter, but rather directly on the I/O-module. Communication is carried out e.g. via the direct connection of a ParameterBox to the RS232 interface of the module or by the connection of the frequency inverter via the system bus. (Parameter (P1101) object selection $\rightarrow \ldots$ )
7. Motor temperature control (display): P739 [-03]

## NOTE

For the determination of the motor stator resistance, the temperature must be within the range $15 \ldots 25^{\circ} \mathrm{C}$.
Overtemperature of the motor is monitored simultaneously and at $155^{\circ} \mathrm{C}$ (switching threshold as for thermistor) the drive is shut down with error message E002.

### 5.4 AS Interface

### 5.4.1 The bus system

The Actuator -Sensor Interface (AS Interface) is a bus system for the lower field bus level. The transfer principle is a single-master system with cyclical polling. Up to 31 standard slaves (or 62 A/B slaves in the extended address range) can be operated on an unshielded two-wire cable up to 100 m long and in any network structure (tree / linear / star). For the AS Interface, since the Complete Specification V2.1 a differentiation is made between standard and A/B slaves. Version V2.1 includes implements a doubling of the number of slaves to 62 . This is implemented by the double assignment of addresses 1-31 and the designation "A slave" and "B slave". A/B slaves are labelled via the ID code and can therefore be uniquely identified by the master. NORD AS Interface modules are standard slaves.
The AS Interface cable (yellow) transfers data and energy. Addressing is carried out via the master, which also provides further management functions, or via a separate addressing device. The 4-bit reference data (in each direction) is transferred cyclically with an effective identification of errors and a cycle time of 5 ms . The bus system is defined in the AS Interface Complete Specification.
The bus system is standardised as per EN 50295, IEC62026.

### 5.4.2 Features

The SK 225E and SK 235E frequency inverter versions provide an integrated AS interface as standard. Therefore, these devices can be directly integrated into an AS interface network. Only the adaptation of various frequency inverter functions (Dip switches or parameters), addressing and the correct connection of the power supply, BUS, sensor and actuator cables needs to be carried out.

## Features

- Electrically isolated bus interface
- $\quad$ Status display (1 LED)
- Configuration optionally via integrated DIP switches and potentiometers or by parameterisation
- Slave profile S-7.0 (4I / 4O)
- $\quad 24 \mathrm{~V}$ supply of the integrated module and the frequency inverter via the yellow AS-i cable.
- Connection to the frequency inverter via the terminal block.
- Optional connection via M12 flange plug connector
- Up to 31 frequency inverters on one bus conductor (standard slave (A-slave) technology)
- Cycle time $\leq 5 \mathrm{~ms}$
- Address as delivered $=0$
- Max. current consumption 290mA, of which 60mA are available for peripherals (initiators, connected parameterisation tool, actuators).

The factory setting of the frequency inverter enables the immediate availability of common AS-i basic functions. These functions can be adapted by parameterisation. For most common applications, DIP switches are alternatively available of the frequency inverter for the selection of functions.

### 5.4.3 Bus structure and technology

The AS interface network can be set up in any configuration. Linear, star, ring or tree structures are possible. An existing network can be subsequently extended by the addition of further slaves. Up to 31 standard slaves (i.e. a maximum of 124 binary sensors and 124 binary actuators) can be connected to and AS interface network or an AS interface master. Each AS interface slave has its own address (1 to 31), which is transferred to the slave with the aid of an addressing device or via a command from the AS interface master to the slave. Each slave address may only be assigned once.
Usually the AS interface master is a part or component of the control unit and forms the interface between the control unit and the connected slaves. An AS master communicates independently and exchanges data with the connected AS-i slave options. Normal network components may not be used in an AS interface network. Only a special AS interface mains unit may be used for the power supply of each AS interface strand. This AS interface power supply is connected directly to the yellow standard cable (ASI+ and ASIcable) and should be located as close as possible to the AS-i master in order to keep the voltage drop as small as possible.


It is essential that the PE connection of the AS interface mains unit (if present) is earthed.
The brown ASi+ and the blue ASi- wire from of the AS interface cable must not be earthed.

### 5.4.4 Commissioning of the AS Interface

## Connection

Connection of the AS interface cable is made via terminals $85 / 85$ of the terminal block and can optionally be made to an appropriately labelled M12 flange plug contact (yellow) Details of the connection terminals are explained in Section 2.8.2.


Illustrations: Connection versions of the AS Interface

## Control voltage - frequency inverter supply

With the use of an AS interface, the FI control unit is supplied via the yellow AS-i cable. In this case, a voltage of 24 V is provided to terminal 44.
Connection of an additional voltage source to this terminal is not permitted and may cause damage to the device!
If the AS interface ("yellow cable") is not used, the control voltage is supplied to the frequency inverter in the usual way via terminals 44/40.

For use of the yellow AS interface cable:
NOTE
- no voltage source may be connected to terminals 44/40,   the frequency inverter supply is via the yellow AS-i cable;   (e.g. activators) can be obtained from terminals 44/40. The total permissible current is   restricted to 60 mA !

As the permissible load on terminal 44 is limited to 60 mA if the AS interface is used, in case of higher current requirements there is the possibility of including an additional mains unit (e.g. SK CU4-...-24V) to supply the additional peripherals. However, under no circumstances may the 24 V from the mains unit be connected to the frequency inverter (See also the following connection example).


If a total current load of 60 mA is not exceeded, it is also permissible to supply initiators via terminal 44 of the frequency inverter.

## Signal status LED (AS-i - specific display)

The status of the AS interface is indicated by the dual-colour LED AS-i. (See also Section 5.1.3)
The displays have the following meaning:
$\left.\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { LED (dual- } \\ \text { colour) } \\ \rightarrow \text { AS Interface }\end{array} & \text { Meaning } \\ \hline \text { OFF } & \begin{array}{l}\text { No AS interface voltage to the module } \\ \text { (PWR) } \\ \text { Connections to terminals 84 and 85 } \\ \text { exchanged. }\end{array} \\ \hline \text { green ON } & \text { Normal operation (AS interface active) }\end{array}\right\} \begin{array}{l}\text { redON } \\ \hline \text { no exchange of data } \\ \rightarrow \text { Slave address = 0 Slave not in LPS } \\ \rightarrow \text { Slave with incorrect IO/ID } \\ \rightarrow \text { Master in STOP mode } \\ \rightarrow \text { Reset active }\end{array}\right\}$


## Configuration

The most important functions (functions of the sensor / actuator signals via the AS-i BUS or the "on board potentiometers" P1 and P2) can be set on the frequency inverter via DIP4 and DIP5 of the DIP switch block (Section 5.1.2 "DIP switch configuration").
Alternatively, the functions can also be assigned via arrays [-01] ... [-04] of parameters (P480) and (P481) or [-01] and [-02] of (P400) (Section: 6.1.5). However, settings made in these parameters are only effective if the DIP switches (DIP4 and DIP5) are set to the position "OFF".
In the default settings of the DIP switches (DIP $4 / 5=$ off), the digital inputs of the frequency
inverter are active.
However, as soon as one of the two DIP switches is set to the position "ON", the functions
of the digital inputs are switched off. However, the gateway function of digital inputs 1 and
2 to the ASi Out bits 2 and 3 is retained.

## Addressing

In order to use a frequency inverter in an ASi network, this must be assigned with a unique address (1-31). The FI is set to address 1 as the factory setting, and can therefore be identified as a "new device" by the AS-i master (prerequisite for the automatic address assignment by the master).

In many other cases, addressing is carried out by means of a normal addressing device for AS-i slaves. The following should be noted:

- Do not use the internal voltage source of the addressing device (FI power consumption) $\rightarrow$
- Ensure the power supply via the yellow AS-i cable.
- Disconnect the AS-i master during addressing
- Set the address $\neq 0$
- Do not doubly assign addresses

Normal hand-held units can be used for the addressing of the frequency inverter. Typical manufacturers are Pepperl+Fuchs (e.g.: VBP-HH1) and IFM. Addressing units without an external power supply cannot provide the required current of 290 mA , which is necessary for the supply of the control level of the frequency inverter. Therefore, a version should be selected, which is designed to meet the requirements of the frequency inverter.

The following lists the possibilities for the practical implementation of the addressing of an SK 225E/SK235E using an addressing unit.

## Method 1

With a normal addressing device (equipped with an M12 plug for connection to the AS-i bus) the AS-i can be integrated into the AS-i network via a suitable access point. The prerequisite for this is that the AS-i master can be switched off.


## Method 2

With an addressing unit (equipped with an M12 plug for connection to the AS-i bus and an additional M12 plug for an external power supply), the addressing unit can be directly connected into the AS-i cable.


### 5.4.5 Technical data for AS interface

Name	Value
Supply of AS interface connection, PWR connection (yellow cable)	$26.5-31.6 \mathrm{~V}, \mathrm{max} .290 \mathrm{~mA}$
Slave profile	$\mathrm{S}-7.0$
I/O-Code	7
ID Code	0
Ext. ID-Code 1/2	F
Address	$01-31$ (Condition as delivered: 0)

### 5.4.6 Certificate

# Zertifikat Certificate 

Das AS-Interface Produkt<br>The AS-Interface product



## SK 22xE SK 23xE

der Firma of the company

## Getriebebau NORD GmbH \& Co.KG

In/at D-22941 Bargteheide
wurde gemaß der Complete Specification (V3.0) mit dem
Slaveprofil S-7.0 entwickelt.
has been developed according to the Complete Specification (V 3.0) with the slave profile S-7.0.

Das Produkt hat die Bezeichnuing
The Product has the designation

## SK 22xE

SK $23 x \mathrm{E}$

Dies Produkt darf mit dem Zertifizierungslogo und der Nummer der Zertifizierungsurkunde (ZU-Nr.)
gekennzeichnet werden.
This product may be marked with the certification Logo and the Number of the certification document (ZU-No.).


Gelnhauself, Germany, 14. April 2009


Zertifizierungsstelle - certification office AS-International Association

## 6 Parameterisation

The frequency inverter, field bus and I/O -extension modules each have their own logic systems. These can be adapted to customers' requirements by means of changeable parameters. The basic functions of the particular modues are factory-set, so that the units have basic functionalities on delivery. Limited adaptations of individual functions of the relevant devices can be implemented vie DIP switches. For all further adjustments, access to the parameters of the relevant device with the aid of a ParameterBox (SK PAR-3H, SK CSX-3H) or NordCon software is essential. It should be noted that the hardware configuration (DIP switches) has priority over configuration via software (parameterisation).
The following describes the relevant parameters for the frequency inverter (Section 6.1) and the I/O extension modules (Section 6.2). Explanations for the parameters relating to the field bus options or the special functions of the POSICON can be obtained from the relevant supplementary manuals.

For changes to the frequency inverter software $V 1.2 \mathrm{RO}$, the structure of individual parameters has been changed for technical reasons.

ATTENTION	(E.g.: up to version V 1.1 R 2 , ( P 417 ) was a simple parameter. As of version V 1.2. R0 this has been divided into two arrays ((P417) [-01] and [-02]))
	When plugging an EEPROM from a frequency inverter with an earlier software version into a frequency inverter with a software version higher than V 1.2, the stored data is automatically adapted to the new format. the new parameters are saved in the default settings. Correct functioning is therefore ensured.
	However, it is not permissible to plug an EEPROM with a software version higher than V 1.2 into a frequency inverter with a lower software version, as this may lead to a complete loss of data.

### 6.1 Parameterisation of frequency inverter SK 200E

Every frequency inverter is factory-set for a motor of the same power. All parameters can be adjusted "online". There are four parameter sets which can be switched over during operation. As delivered, all parameters are visible; however, some can be hidden with parameter P003.
NOTE

As there are dependencies between parameters, it is possible for invalid internal data and
operating faults to be generated briefly. Only the inactive or non-critical parameter sets should
be adjusted during operation.

The individual parameters are combined in various groups. The first digit of the parameter number indicates the assignment to a menu group:

Menu group	No.	Master function
Operating displays	(P0--):	For the selection of the physical units of the display value.
Basic parameters	(P1--):	Contain the basic inverter settings, e.g. switch on and switch off procedures   and, along with the motor data, are sufficient for standard applications.
Motor data	(P2--):	Settings for the motor-specific data, important for ISD current control, and   selection of characteristic curve during the setting of dynamic and static boost.
Control Parameters	(P3--):	Parameter for the adaptation of any incremental encoder used.
Control terminals	(P4--):	Analog input and output scaling, specification of digital input and relay output   functions, as well as PI controller parameters.
Additional parameters	(P5--):	Functions dealing with e.g. the BUS interface, pulse frequency or error   acknowledgement.
Positioning	(P6--):	Adjustment of the positioning function in SK 200E. For further details please   refer to Manual BU 0210.
Information	(P7--):	Display of e.g. actual operating values, old error messages, equipment status   reports or software version.
Array parameters	-01	Some parameters in these groups can be programmed and read in several   levels (arrays). After the parameter is selected, the array level must also be   selected.

NOTE: Parameter P523 can be used to load the factory settings for all parameters at any time. This can be helpful, e.g. during the commissioning of a frequency inverter whose parameters no longer correspond with the factory settings.

## ATTENTION



All current parameter settings will be overwritten, if P523= 1 is set and confirmed with "OK".
To save the actual parameter settings, these can be transferred to the ParameterBox memory.

## Availability of the parameters

Due to certain configurations, the parameters are subject to certain conditions. The following tables (from Section 6.1 onwards) list all parameters together with the relevant information.


## Array parameter display

Some parameters have the option of displaying settings and views in several levels (arrays). After the parameter is selected, the array level is displayed and must then also be selected.
If the SimpleBox SK CSX-3H is used, the array level is shown by $\quad L_{-0} 1$. With the ParameterBox SK PAR-3H (picture on right) the selection options for the array level appear at the top right of the display.

SimpleBox SK CSX-3H



### 6.1.1 Operating displays

The abbreviations used are described in Section 9.12 "Abbreviations in this Manual".

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter   set
P000	Operating parameter display			
$0.01 \ldots 9999$	In the SimpleBox (SK CSX-3H) display, the parameter value online selected in P100 is   displayed.			


$7=\boldsymbol{c o s} \mathbf{P h i}$, the currently calculated value of the power factor.
8 = Apparent power [kVA]: the actual apparent power calculated by the FI.
$9=$ Real power [kW]: the actual effective power calculated by the FI.
$10=$ Torque [\%]: the actual torque calculated by the FI.
$11=$ Field [\%]: the actual field in the motor calculated by the FI.
12 = On-time (operating hours) [h]: time that voltage is applied to the FI.
$13=$ Run-time (enabled operating hours) [h]: time for which the FI has been enabled.
14 = Analog input 1 [\%], actual value AIN1 of the first I/O extension SK xU4-IOE.
$15=$ Analog input $2[\%]$, actual value AIN2 of the second I/O extension SK xU4-IOE.
$16=$ Position setpoint value $\rightarrow$ Posicon, BU 0210
17 = Position current value $\rightarrow$ Posicon, BU 0210
$19=$ Temperature of heat sink [ $\left.{ }^{\circ} \mathrm{C}\right]$ : current temperature of the FI heat sink.
20 = Usage rate motor [\%]: average motor load, based on the known motor data (P201...P209).
21 = Usage rate braking resistor - R [\%]: average braking resistor load, based on the known resistance data (P556...P557).
$22=$ Internal temperature $\left[{ }^{\circ} \mathrm{C}\right]$, current temperature in FI housing.
$23=$ Motor temperature $\left[{ }^{\circ} \mathrm{C}\right]$, only in combination with the analog input and appropriate wiring (KTY84).
$30=$ Current setpoint value of the motor potentiometer-Setpoint value [Hz], display of the setpoint which can be set in advance (without the drive unit running) via the motor potentiometer function 71 / 72 (See parameter P420).
$\mathbf{5 0}=$ Actual incremental encoder position value $\rightarrow$ Posicon, BU 0210
$51=$ Actual absolute encoder position value $\quad \rightarrow$ Posicon, BU 0210
$52=$ Actual position difference $\rightarrow$ Posicon, BU 0210
$\mathbf{5 3}=$ Actual position difference Absolute/Incremental $\rightarrow$ Posicon, BU 0210
54 = Actual position difference Calculated/Measured $\quad \rightarrow$ Posicon, BU 0210
$\mathbf{6 0}=\mathbf{R}$ Stator Ident: stator resistance, automatic determination of motor data, P220
$61=\mathbf{R}$ Rotor Ident: rotor resistance, automatic determination of motor data, P220
$\mathbf{6 2}=\mathbf{L}$ Scatter Stator Ident, stator leakage inductance, from automatic determination of motor data, P220
63 = L Stator Ident: stator inductance, from automatic determination of motor data, P220

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P002	Display Factor		S	
$\begin{aligned} & 0.01 \ldots 999.99 \\ & \{1.00\} \end{aligned}$	The selected operating value in scaling factor in POOO and display It is therefore possible to display	$1>$ Sele parame   perating	splay< is m ay<.   e.g. the thro	lied with the hut quantity
P003	Supervisor code			
$\begin{aligned} & 0 \ldots 9999 \\ & \{1\} \end{aligned}$	$\mathbf{0}=$ All parameters are visible except for the Supervisor parameters and the group P3xx/ P6xx   $1=$ All parameters are visible except for the group P3xx and P6xx.   $\mathbf{2}=$ All parameters are visible except for the group P6xx.   3 = All parameters are visible.   $4=$... 9999, (except 65) only parameters P001 and P003 are visible.			

### 6.1.2 Basic parameters (Frequency inverter)



If enabled via the keyboard (SimpleBox, PotentiometerBox or ParameterBox), the operating parameter set will match the settings in P100.

P101	Copy parameter set	S	
$\begin{aligned} & 0 \ldots 4 \\ & \{0\} \end{aligned}$	After confirmation with the OK key, a copy of the parameter set selected in P100 >Parameter set< is written to the parameter set dependent on the value selected here.   $0=$ Do not copy   1 = Copy actual to P1: copies the active parameter set to parameter set 1   $\mathbf{2}=$ Copy actual to P2: copies the active parameter set to parameter set 2   3 = Copy actual to P3: copies the active parameter set to parameter set 3   4 = Copy actual to P4: copies the active parameter set to parameter set 4		
P102	Acceleration time		P
$\begin{aligned} & 0 . . .320 .00 \mathrm{~s} \\ & \{2.00\} \end{aligned}$	Acceleration time (acceleration ramp) is the time corresponding to the linear frequency rise from OHz to the set maximum frequency (P105). If an actual setpoint of $<100 \%$ is being used, the acceleration time is reduced linearly according to the setpoint set.   The acceleration time can be extended by certain circumstances, e.g. FI overload, setpoint lag, smoothing, or if the current limit is reached.   Notes on ramp gradient:   Amongst other things, the ramp gradient is governed by the inertia of the rotor. A ramp with a gradient which is too steep may result in the "inversion" of the motor. In general, extremely steep ramps (e.g.: $0-50 \mathrm{~Hz}$ in $<0.1 \mathrm{~s}$ ) should be avoided, as may cause damage to the frequency inverter.		
P103	Deceleration time		P
$\begin{aligned} & 0 \ldots 320.00 \mathrm{~s} \\ & \{2.00\} \end{aligned}$	Deceleration time (braking ramp) is the time corresponding to the linear frequency reduction from the set maximum frequency (P105) to 0 Hz . If an actual setpoint $<100 \%$ is used, the deceleration time reduces accordingly.		

Notes on ramp gradient: See parameter (P102)

Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set
P104	Minimum frequency			P
$0.0 \ldots 400.0 \mathrm{~Hz}$	The minimum frequency is the frequency supplied by the FI as soon as it is enabled and no   additional setpoint is set.			
$\{0.0\}$	In combination with other setpoints (e.g. analog setpoint of fixed frequencies) these are added to			

This frequency is undershot when
a) The drive is accelerated from standstill.
b) The FI is blocked. The frequency then reduces to the absolute minimum (P505) before it is blocked.
c) The Fl is reversing. The reverse in the rotation field takes place at the absolute minimum frequency (P505).

This frequency can be continuously undershot if, during acceleration or braking, the function "Maintain frequency" (Function Digital input $=9$ ) is executed.
\(\left.$$
\begin{array}{ll|l|c}\hline \text { P105 } & \text { Maximum frequency } & & \mathrm{P} \\
\hline 0.1 \ldots 400.0 \mathrm{~Hz} & \begin{array}{l}\text { The frequency supplied by the FI after being enabled and once the maximum setpoint is present, } \\
\text { e.g. analog setpoint corresponding to P403, a correspondingly fixed frequency or maximum via } \\
\text { the SimpleBox / ParameterBox. }\end{array}
$$ <br>

\{50.0\} DIP7=off\end{array}\right\}\)	This frequency can only be overshot by the slip compensation (P212), the function "Maintain
frequency" (function digital input = 9) or a change to another parameter set with lower maximum	
frequency.	


| P106 Ramp smoothing |  | $S$ | $P$ |
| :--- | :---: | :---: | :---: | :---: |

$0 \ldots 100 \% \quad$ This parameter enables a smoothing of the acceleration and deceleration ramps. This is \{ 0 \} necessary for applications where gentle, but dynamic speed change is important.
Ramp smoothing is carried out for every setpoint change. The value to be set is based on the set acceleration and deceleration time, however values $<10 \%$ have no effect.
The following then applies for the entire acceleration or deceleration time, including rounding:


Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter   set
P107	Brake reaction time			P

$0 \ldots 2.50 \mathrm{~s} \quad$ Electromagnetic brakes have a physically-dependent delayed reaction time when actuated. This $\{0.00\} \quad$ can cause a dropping of the load for lifting applications, as the brake only takes over the load after a delay.
This reaction time can be taken into account under parameter P107 (Braking control).
Within the adjustable application time, the FI supplies the set absolute minimum frequency (P505) and so prevents movement against the brake and load drop when stopping.
See also the parameter >Release time< (P114)
NOTE: For the control of electromagnetic braking (especially for lifting operations) an internal relay should be used $\rightarrow$, Function 1, external brake (P434). The minimum absolute frequency (P505) should never be less than 2.0 Hz .

NOTE: If a time $>0$ is set in (P107) or (P114), at the moment the FI is switched on, the level of the excitation current (field current) is checked. If no magnetising current is present, the FI remains in magnetising mode and the motor brake is not released.
In order to achieve a shut-down and an error message (E016) in this case, (P539) must be set to 2 or 3 .

## Recommendation for applications:

Lifting equipment with brake, without speed feedback

P114 = 0.2... 0.3 sec .
P107 = 0.2...0.3sec.
P201...P208 = Motor data
P434 = 1 (ext. brake)
P505 = $2 \ldots 4 \mathrm{~Hz}$
for safe start-up
P112 = 401 (off)
P536 = 2.1 (off)
P537 = 201 (off)
P539 = 2/3 (Isd monitoring)
against load drops
P214 = 50...100\% (precontrol)

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter   set
P108	Disconnection mode		S	P
$0 \ldots 13$	This parameter determines the manner in which			

$0 \ldots 13$ This parameter determines the manner in which the output frequency is reduced after "Blocking"
$\mathbf{0}=$ Voltage disable:The output signal is switched off immediately. The FI no longer supplies an output frequency. In this case, the motor is braked only by mechanical friction. Immediately switching the FI on again can lead to an error message.
$\mathbf{1}=$ Ramp down: The current output frequency is reduced in proportion to the remaining deceleration time, from P103/P105.
$\mathbf{2}=$ Delayed ramping: as with ramp, however for generational operation the brake ramp is extended, or for static operation the output frequency is increased. Under certain conditions, this function can prevent overload switch off or reduce brake resistance power dissipation.
NOTE: This function must not be programmed if defined deceleration is required, e.g. with lifting mechanisms.
3 = Instant DC braking: The FI switches to the preselected DC current (P109) immediately. This DC current is supplied for the remaining proportion of the >DC brake time $<(\mathrm{P} 110$ ). Depending on the relationship of the actual output frequency to the max. frequency (P105), the >DC braking time < is shortened. The time taken for the motor to stop depends on the application. This depends on the inertia of the load, the friction and the DC current which is set (P109). With this type of braking, no energy is fed back to the FI. Heat losses occur primarily in the rotor of the motor.
4 = Constant brake distance: The brake ramp starts after a delay if the equipment is not being driven at the maximum output frequency (P105). This results in an approximately similar stopping distance for different frequencies.
NOTE: This function cannot be used as a positioning function. This function should not be combined with ramp smoothing (P106).
$5=$ Combined braking: Dependent on the actual link voltage (VDC), a high frequency voltage is switched to the basic frequency (linear characteristic curves only, P211 = 0 and P212 $=0$ ). The deceleration time is retained where possible ( P 103 ). $\rightarrow$ additional motor warming!
6 = Quadratic ramp: The brake ramp does not follow a linear path, but rather a decreasing quadratic one.
7 = Quadratic ramp with delay: Combination of functions 2 and 6
$\mathbf{8}=$ Quadratic ramp with combined braking: Combination of functions 5 and 6
9 = Constant acceleration power: Only applies in field weakening range! The drive is further accelerated or braked with a constant electrical power. The ramp depends on the load.
$10=$ Distance calculator: Constant distance between actual frequency / speed and the set minimum output frequency (P104).
11 = Constant acceleration power with delay: Combination of functions 2 and 9.
12 = Constant acceleration power Mode3: as 11 with additional brake chopper relief
13 = Switch-off delay

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P109	DC brake current		S	P
$\begin{aligned} & 0 . . .250 \% \\ & \{100\} \end{aligned}$	Current setting for the functions of DC current braking (P108 = 3) and combined braking (P108 = 5).   The correct setting value depends on the mechanical load and the required deceleration time. A higher setting brings large loads to a standstill more quickly.   The $100 \%$ setting relates to a current value as stored in the >Nominal current< parameter P203.   NOTE: The amount of DC current ( 0 Hz ) which the FI can supply is limited. For this value, please refer to the table in Section 9.5.3, column: 0 Hz . In the basic setting this limiting value is about $110 \%$.			
P110	Time DC brake on		S	P
$\begin{aligned} & 0.00 \ldots 60.00 \mathrm{~s} \\ & \{2.00\} \end{aligned}$	The time during which the motor has the current selected in parameter >DC brake current< applied to it during the DC braking functions (P108 = 3).   Depending on the relationship, actual output frequency to max. frequency ( P 105 ), the $>$ Time DC brake on< is shortened.   The time starts running with the removal of the enable and can be interrupted by fresh enabling.			
P111	$P$ factor torque limit		S	P
$\begin{aligned} & 25 \ldots 400 \% \\ & \{100\} \end{aligned}$	Directly affects the behaviour of the drive at torque limit. The basic setting of $100 \%$ is sufficient for most drive tasks.   If this value is too high, the drive unit will tend to oscillate when the torque limit is reached. If the value is too low, the programmed torque limit may be exceeded.			


| P112 Torque current limit |  | $S$ | $P$ |
| :--- | :--- | :--- | :--- | :---: |

25 ... $400 \% / 401$ With this parameter, a limit value for the torque-generating current can be set. This can prevent \{ 401 \} mechanical overloading of the drive. It cannot provide any protection against mechanical blockages (movement to stops). A slipping clutch which acts as a safety device must be provided.

The torque current limit can also be set over an infinite range of settings using an analog input. The maximum setpoint (compare adjustment $100 \%$, P403/P408) then corresponds to the value set in P112.

The limit value $20 \%$ of torque current cannot be undershot by a smaller analog setpoint (P400/405 = 2) (in servo mode with P300 = 1, not below 10\%)!
$401=$ OFF means that the torque current limit is switched off! This is also the basic setting for the FI.

Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set
P113	Jog frequency		S	P
$-400.0 \ldots 400.0 \mathrm{~Hz}$	When using the SimpleBox or ParameterBox to control the FI, the jog frequency is the initial   value following enabling.			
$\{0.0\}$				

Alternatively, when control is via the control terminals, the jog frequency can be activated via one of the digital inputs.
The setting of the jog frequency can be carried out directly via this parameter or, if the FI is enabled via the keyboard, by pressing the OK key. In this case, the actual output frequency is set in parameter P113 and is then available for the next start.
NOTE: $\quad$ Specified setpoints via the control terminals, e.g. jog frequency, fixed frequencies or analog setpoints, are generally added with the correct sign. The set maximum frequency (P105) cannot be exceeded and the minimum frequency (P104) cannot be undershot.

[-01] = Bus TB (Extn. 1)
[-02] = Analog TB (Extn.2) (second I/O-TB)
[-03] = Analog TB (Extn.3) (first I/O-TB)
[-04] = Extension 4 (reserved)

## 0 = Monitoring off

$1=$ Auto: communications are only monitored if an existing communication is interrupted. If after switching on the mains a module which was previously present is not detected, this does not result in an error.
The monitoring only becomes active when one of the extensions commences communication with the FI.
2 = Monitoring active immediately: immediately after being connected to the mains, the FI commences monitoring the relevant module. If the module is not detected after the mains have been switched on, the FI remains in the
state "Not on standby" for 5 seconds and then triggers an error message.

### 6.1.3 Motor data / characteristic curve parameters

Parameter   \{Factory setting\}	Setting value / Description / Note		Device $\quad$ Sup	Supervisor	Parameter set
P200	Motor list				P
$\begin{aligned} & 0 \ldots 45 \\ & \{0\} \end{aligned}$	The factory settings for parameters P201...P2   By selecting one of (P201...P209) are ad pole DS standard mo   $0=$ No change of   1 = No motor: In pre-magnetis Possible app transformers $50.0 \mathrm{~Hz} / 150$	he motor data can be is a 4-pole DS stand   possible digits and ed to the selected sta   a   setting, the FI operat time, and is therefore tions are induction fu e following motor data $\mathrm{m} / 15.0 \mathrm{~A} / 400 \mathrm{~V} / 0.0$	ited with this param motor with the nomin pressing the OK ard power. The basis   without current contr recommended for ces or other applicati set here:   $\mathrm{N} / \cos \varphi=0.90 /$ star	meter. The minal FI pow key, all m sis for the m   trol, slip co or motor app ations with   tar / R 0.01	ory setting in setting.   parameters data is a 4   ensation and tions.   and   $I_{\text {empty }} 6.5 \mathrm{~A}$
	$\begin{aligned} \mathbf{2} & =0.25 \mathrm{~kW} 230 \mathrm{~V} \\ \mathbf{3} & =0.33 \mathrm{HP} 230 \mathrm{~V} \\ \mathbf{4} & =0.25 \mathrm{~kW} 400 \mathrm{~V} \\ \mathbf{5} & =0.33 \mathrm{HP} 460 \mathrm{~V} \\ \mathbf{6} & =0.37 \mathrm{~kW} 230 \mathrm{~V} \\ \mathbf{7} & =0.50 \mathrm{HP} 230 \mathrm{~V} \\ \mathbf{8} & =0.37 \mathrm{~kW} 400 \mathrm{~V} \\ \mathbf{9} & =0.50 \mathrm{HP} 460 \mathrm{~V} \\ 10 & =0.55 \mathrm{~kW} 230 \mathrm{~V} \\ 11 & =0.75 \mathrm{HP} 230 \mathrm{~V} \\ 12 & =0.55 \mathrm{~kW} 400 \mathrm{~V} \\ 13 & =0.75 \mathrm{HP} 460 \mathrm{~V} \\ 14 & =0.75 \mathrm{~kW} 230 \mathrm{~V} \\ \mathbf{1 5} & =1.0 \mathrm{HP} 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathbf{1 6}=0.75 \mathrm{~kW} 400 \mathrm{~V} \\ & \mathbf{1 7}=1.0 \mathrm{HP} 460 \mathrm{~V} \\ & \mathbf{1 8}=1.1 \mathrm{~kW} 230 \mathrm{~V} \\ & \mathbf{1 9}=1.5 \mathrm{HP} 230 \mathrm{~V} \\ & \mathbf{2 0}=1.1 \mathrm{~kW} 400 \mathrm{~V} \\ & \mathbf{2 1}=1.5 \mathrm{HP} 460 \mathrm{~V} \\ & \mathbf{2 2}=1.5 \mathrm{~kW} 230 \mathrm{~V} \\ & \mathbf{2 3}=2.0 \mathrm{HP} 230 \mathrm{~V} \\ & \mathbf{2 4}=1.5 \mathrm{~kW} 400 \mathrm{~V} \\ & \mathbf{2 5}=2.0 \mathrm{HP} 460 \mathrm{~V} \\ & \mathbf{2 6}=2.2 \mathrm{~kW} 230 \mathrm{~V} \\ & \mathbf{2 7}=3.0 \mathrm{HP} 230 \mathrm{~V} \\ & \mathbf{2 8}=2.2 \mathrm{~kW} 400 \mathrm{~V} \\ & \mathbf{2 9}=3.0 \mathrm{HP} 460 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 30=3.0 \mathrm{~kW} 230 \mathrm{~V} \\ & 31=3.0 \mathrm{~kW} 400 \mathrm{~V} \\ & 32=4.0 \mathrm{~kW} 230 \mathrm{~V} \\ & 33=5.0 \mathrm{HP} 230 \mathrm{~V} \\ & 34=4.0 \mathrm{~kW} 400 \mathrm{~V} \\ & 35=5.0 \mathrm{HP} 460 \mathrm{~V} \\ & 36=5.5 \mathrm{~kW} 230 \mathrm{~V} \\ & 37=7.5 \mathrm{HP} 230 \mathrm{~V} \\ & 38=5.5 \mathrm{~kW} 400 \mathrm{~V} \\ & 39=7.5 \mathrm{HP} 460 \mathrm{~V} \\ & 40=7.5 \mathrm{~kW} 230 \mathrm{~V} \\ & 41=10 \mathrm{HP} 230 \mathrm{~V} \\ & 42=7.5 \mathrm{~kW} 400 \mathrm{~V} \\ & 43=10 \mathrm{HP} 460 \mathrm{~V} \end{aligned}$	$44=$   V $44=$   V $46=$   V $46=$   V $48=$   V $49=$   V $\mathbf{5 0}=$   V $\mathbf{5 1}=$   V $\mathbf{5 2}=$   V $\mathbf{5 3}=$   V    V    V    V	1.0 kW 400 V   5.0 HP 460V   5.0 kW 400 V   0.0 HP 460V   8.5 kW 400 V   5.0 HP 460V   2.0 kW 400V   0.0 HP 460V   0.0 kW 400V   0.0 HP 460V

NOTE: As P200 returns to $=0$ after the input confirmation, the control of the set motor can be implemented via parameter P205.

If DIP switch $7(50 / 60 \mathrm{~Hz}$ operation, Section 5.1.1) is switched over, the appropriate nominal motor data according to the FI power rating are reloaded from the P200 list.

P201	Nominal frequency		S
$10.0 \ldots 400.0 \mathrm{~Hz}$   $\left\{^{*}\right\}$	The motor nominal frequency determines the V/f break point at which the FI supplies the   nominal voltage (P204) at the output.		
P202	Nominal speed	S	P
$150 \ldots 24000 \mathrm{rpm}$ The nominal motor speed is important for the correct calculation and control of the motor slip   and the speed display (P001 = 1).   $\left\{^{* * *}\right\}$			



[^7]

[^8]| Parameter <br> \{Factory setting $\}$ | Setting value / Description / Note | Device | Supervisor | Parameter <br> set |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{P 2 1 2 ~}^{\mathbf{3}}$ | Slip compensation |  | S | P |
| $0 \ldots 150 \%$ | The slip compensation increases the output frequency, dependent on load, to keep the DC <br> asynchronous motor speed approximately constant. |  |  |  |
| T100\} | The factory setting of 100\% is optimal when using DC asynchronous motors and correct motor <br> data has been set. <br> If several motors (different loads or outputs) are operated with one FI, the slip compensation <br> P212 must be set to 0\%. This rules out a negative influence. This also applies to synchronous <br> motors that do not have slip due to their design. |  |  |  |


P213	ISD control loop gain		S
$25 \ldots 400 \%$	This parameter influences the control dynamics of the FI current vector control (ISD control).   $\{100\}$	Higher settings make the controller faster, lower settings slower.   Depending on the type of application, this parameter can be altered, e.g. to avoid unstable   operation	


P214	Torque precontrol		S
$-200 \ldots 200 \%$	This function allows a value for the expected torque requirement to be set in the controller. This   function can be used in lifting applications for a better load transfer during start-up.		
$\{0\}$	NOTE: with rotation field to the right, motor torques are entered with a positive sign,   generator torques are entered with a negative sign. The reverse applies for the counter   clockwise rotation.		


P215	Boost precontrol		S
$0 \ldots 200 \%$	Only with linear characteristic curve (P211 $=0 \%$ and $\mathrm{P} 212=0 \%$ ).	P	

$\{0\} \quad$ For drives that require a high starting torque, this parameter provides an option for switching in an additional current during the start phase. The application time is limited and can be selected at parameter >Time boost precontrol< P216.
All current and torque current limits that may have been set (P112 and P536, P537) are deactivated during the boost lead time.

P216 Time boost precontrol		S	P

$0.0 \ldots 10.0 \mathrm{~s} \quad$ This parameter is used for 3 functionalities
\{ 0.0 \}
Time limit for the boost lead: Effective time for the increased starting current. Only with linear characteristic curve ( $\mathrm{P} 211=0 \%$ and P212 $=0 \%$ ).

Time limit for suppression of pulse switch-off (P537): enables start-up under heavy load.
Time limit for suppression of switch-off on error in parameter (P401), setting \{05\},„0-10V with switch-off on error 2"

[^9]| Parameter <br> \{Factory setting\} | Setting value / Description / Note | Device | Supervisor | Parameter set |
| :---: | :---: | :---: | :---: | :---: |
| P217 | Oscillation damping |  | S | P |
| $\begin{aligned} & 0 . . .400 \% \\ & \{10\} \end{aligned}$ | With the oscillation damping, id measure of the damping power. <br> For oscillation damping, the oscill of a high pass filter. This is amplifi <br> The limit for the switched value is filter depends on P213. For highe <br> With a set value of $10 \%$ for P217 this corresponds to $\pm 1.8 \mathrm{~Hz}$ <br> The function is not active in "Serv | onics can <br> is filtered ted and <br> to P217 <br> he time <br> $\pm 0.045$ | amped. Par <br> the torque d to the out me constant t is lower. witched in. | ter 217 is a <br> ent by means frequency. <br> the high pass <br> 00\% in P217, |
| P218 | Modulation depth |  | S |  |
| $\begin{aligned} & 50 \ldots 110 \% \\ & \{100\} \end{aligned}$ | This setting influences the maximum possible output voltage of the FI in relation to the mains voltage. Values $<100 \%$ reduce the voltage to values below that of the mains voltage if this is required for motors. Values $>100 \%$ increase the output voltage to the motor increased the harmonics in the current, which may cause oscillation in some motors. |  |  |  |


| P219 | Automatic magnetisation <br> adjustment | S |  |
| :--- | :--- | :--- | :--- | :--- |

$25 \ldots 100 \% / 101$ With this parameter, an automatic adjustment of the magnetic flux to the motor load can be made. P219 is a limiting value, to which the field in the motor can be reduced.

As standard, the value is set to $100 \%$, and therefore no reduction is possible. As minimum, $25 \%$ can be set.

The reduction of the field is performed with a time constant of approx. 7.5 sec . On increase of load the field is built up again with a time constant of approx. 300 ms . The reduction of the field is carried out so that the magnetisation current and the torque current are approximately equal, so that the motor is operated with "optimum efficiency". An increase of the field above the setpoint value is not intended.

This function is intended for applications in which the required torque only changes slowly (e.g. pumps and fans). Its effect therefore replaces a quadratic curve, as it adapts the voltage to the load.
NOTE: This must not be used for lifting or applications where a more rapid build-up of the torque is required, as otherwise there would be overcurrent switch-offs or inversion of the motor on sudden changes of load, because the missing field would need to be compensated by a disproportionate torque current.
$101=$ automatic, with the setting P219=101 an automatic magnetisation current controller is activated. The ISD controller then operates with a subordinate magnetizing controller, which improves the slippage calculation, especially at higher loads. The control times are considerably faster compared to the Normal ISD control (P219 = 100)

Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set

## P2xx <br> Control/characteristic curve parameters

NOTE: "typical"
settings for the...


Current vector control (factory setting)
P201 to P209 = Motor data
P210 = 100\%
P211 $=100 \%$
P212 = 100\%
P213 = 100\%
P214 = 0\%
P215 = no significance
P216 = no significance

Linear V/f characteristic curve
P201 to P209 = Motor data
P210 $=100 \%$ (static boost)
P211 = 0\%
$\mathrm{P} 212=0 \%$
$\mathrm{P} 213=$ no significance
P214 = no significance
P215 = 0\% (dynamic boost)
P216 = 0s (time dyn. boost)

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter   set
P220	Parameter identification			P

$\ldots$ up to 240 s The motor data is automatically determined by the FI with this parameter. In most cases this $\{0\} \quad$ leads to considerably better drive characteristics, as DC asynchronous motors are subject to manufacturing tolerances which are not documented on the rating plate.
The identification of all parameters takes some time. Do not switch off the mains voltage during this time. The identification can only be carried out in an "operative" condition. This must be particularly taken into account in BUS operation.

If unfavourable operating characteristics result, select a suitable motor in P200 or set the parameters P201 ... P208 manually.

## 0 = No identification

$\mathbf{1}=$ Identification RS: only the stator resistance (display in P208) is determined by multiple measurements.

2 = Identification motor: all motor parameters (P202, P203, P206, P208, P209) are determined.

Procedure:
a) The identification should be made with the motor cold. Warming up of the motor during operation is automatically taken into account.
b) The FI must be in an "operative condition" For bus operation, the bus must be operating without error. The FI must not be in a state of switch-on block.
c) The motor power may only be one power level greater or 3 power levels lower than the nominal power of the FI.
d) The motor data should be set according to the rating plate or P200. However, at least the nominal frequency (P201), the nominal speed (P202), the voltage (P204), the power (P205) and the motor circuit (P207) should be known.
e) If the identification cannot be concluded successfully, the error message E019 is generated. See also Section 6, Error messages.
f) Reliable identification can be made with motor cables up 20 m in length.

NOTE: $\quad$ After identification of parameters, P 220 is again $=0$.
Care must be taken that the connection to the motor is not interrupted during the entire measuring process.

### 6.1.4 Control parameters

In combination with an HTL incremental encoder, a closed speed control loop can be set up via digital inputs 2 and 3 of the Fl .
Alternatively, the incremental encoder signal can be used for other purposes. For this, the required function must be selected in parameter 325.
In order for this parameter to be visible, the supervisor parameter P003 $=2 / 3$ must be set.

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P300	Servo mode		S	P
$\begin{aligned} & 0 \ldots 1 \\ & \{0\} \end{aligned}$	This parameter activates speed This leads to a very stable speed $\begin{aligned} & 0=\text { Off } \\ & 1=\text { On } \end{aligned}$   NOTE: for correct functio inputs DIN 2 and incremental encod parameter (P301)   ATTENTION:   the functions of ((P420 [-02], [-03])	d meas o motor   mental 2.8.3 he corr   DIN 2	t via an inc till.   must be con ur and conta se number   DIN 3 mus	ental encoder.   ected to digital ssignments for be entered in   e deactivated


| P301 Incremental encoder resolution |  | S |  |
| :--- | :--- | :--- | :--- | :--- |

$0 \ldots 17 \quad$ Input of the pulse-count per rotation of the connected incremental encoder.
$\{6\} \quad$ If the encoder rotation direction is not the same as the motor driven by the FI, (depending on installation and wiring), this can be compensated for by selecting the corresponding negative increment numbers 8... 16 .

$\mathbf{0}=500$ pulses	$\mathbf{8}=-500$ pulses	
$\mathbf{1}=512$ pulses	$\mathbf{9}=-512$ pulses	
$\mathbf{2}=1000$ pulses	$\mathbf{1 0}=-1000$ pulses	
$\mathbf{3}=1024$ pulses	$\mathbf{1 1}=-1024$ pulses	
$\mathbf{4}=2000$ pulses	$\mathbf{1 2}=-2000$ pulses	
$\mathbf{5}=2048$ pulses	$\mathbf{1 3}=-2048$ pulses	
$\mathbf{6}=4096$ pulses	$\mathbf{1 4}=-4096$ pulses	
$\mathbf{7}$	$=5000$ pulses	$\mathbf{1 5}=-5000$ pulses
$\mathbf{1 7}$	$=+8192$ pulses	$\mathbf{1 6}=-8192$ pulses

NOTE: (P301) is important for the positioning control in SK 200E. If an incremental encoder is used for positioning (P604=1), the setting of the pulse number is made here. (see Manual BU 0210)

P310	Speed controller P		S
$0 \ldots 3200 \%$	P-component of the encoder (proportional amplification).		
$\{100\}$	Amplification factor, with which the speed difference is multiplied from the setpoint and actual   frequency. A value of 100\% means that a speed difference of 10\% produces a setpoint of $10 \%$.   Values that are too high can cause the output speed to oscillate.		


P311 Speed controller I		S	P

$0 \ldots 800 \% / \mathrm{ms} \quad$ I-component of the encoder (Integration component).
$\{20\} \quad$ The integration component of the controller completely eliminates any control deviation. The value indicates how large the setpoint change is per ms. Values that are too small cause the controller to slow down (reset time is too long).

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P312	Torque current controller P		S	P
$\begin{aligned} & 0 \text {... } 800 \% \\ & \{200\} \end{aligned}$	Current controller for the torque current. The higher the current controller parameters are set, the more precisely the current setpoint is maintained. Excessively high values in P312 generally lead to high-frequency oscillations at low speeds; on the other hand, excessively high values in P313 generally produce low frequency oscillations across the whole speed range.   If the value "Zero" is entered in P312 and P313, then the torque current control is switched off. In this case, only the motor model precontrol is used.			
P313	Torque current controller I		S	P
$\begin{aligned} & 0 \ldots 800 \% / \mathrm{ms} \\ & \{125\} \end{aligned}$	I -component of the torque current controller. (See also P312 > Torque current controller $\mathrm{P}<$ )			
P314	Torque current controller limit		S	P
$\begin{aligned} & \hline 0 \ldots 400 \mathrm{~V} \\ & \{400\} \end{aligned}$	Determines the maximum voltage increase of the torque current controller. The higher the value, the greater the maximum effect that can be exercised by the torque current controller. Excessive values in P314 can specifically lead to instability during transition to the field weakening zone (see P320). The values for P314 and P317 should always be set roughly the same, so that the field and torque current controllers are balanced.			
P315	Field current controller P		S	P
$\begin{aligned} & 0 \text {... } 800 \% \\ & \{200\} \end{aligned}$	Current controller for the field current. The higher the current controller parameters are set, the more precisely the current setpoint is maintained. Excessively high values for P315 generally lead to high frequency vibrations at low speeds. On the other hand, excessively high values in P316 generally produce low frequency vibrations across the whole speed range If the value "Zero" is entered in P315 and P316, then the field current controller is switched off. In this case, only the motor model precontrol is used.			


P316	Field current controller I		S	P
$0 \ldots 800 \% / \mathrm{ms}$   $\{125\}$	I-component of the field current controller. See also P315 >Field current controller $\mathrm{P}<$			


| P317 Field current controller limit |  | S | P |
| :--- | :---: | :---: | :---: | :---: |


$0 \ldots 400 \mathrm{~V}$	Determines the maximum voltage increase of the torque current controller. The higher the   value, the greater is the maximum effect that can be exercised by the field current controller.   Excessive values in P317 can specifically lead to instability during transition to the field   reduction range (see P320). The values for P314 and P317 should always be set roughly the   same, so that the field and torque current controllers are balanced.		
$\mathbf{P 3 1 8}$	Field weakening controller P	S	P
$0 \ldots 800 \%$	The field weakening controller reduces the field setpoint when the synchronous speed is   exceeded. Generally, the field weakening controller has no function; for this reason, the field		
weakening controller only needs to be set if speeds are set above the nominal motor speed.			
Excessive values for P318 / P319 will lead to controller oscillations. The field is not weakened			


| P319 Field weakening controller I |  | S | P |
| :--- | :---: | :---: | :---: | :---: |


Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter set
P320	Field weakening controller border		S	P
$0 \ldots 110 \%$	The field weakening limit determines at which speed / current the controller will begin to weaken   the field. At a set value of 100\% the controller will begin to weaken the field at approximately the   synchronous speed.			
$\{100\}$	If values much larger than the standard values have been set in P314 and/or P317, then the   field weakening limit should be correspondingly reduced, so that the control range is actually   available to the current controller.			


P321	Speed control I brake delay off		S	P

$0 \ldots 4$ During the brake release time (P107/P114), the I-component of the rotation speed control is
\{ 0 \} increased. This leads to better load take-up, especially with vertical movements.

$$
\begin{array}{ll}
0=\text { P311 speed control I x } 1 & \\
1=\text { P311 speed control I x } 2 & 3=\text { P311 speed control I x } 8 \\
2=\text { P311 speed control I } \times 4 & 4=\text { P311 speed control I } \times 16
\end{array}
$$

P325	Function encoder		S	

$0 \ldots 4$ The actual speed list value supplied by an incremental encoder to the FI can be used for various $\{0\} \quad$ functions in the FI.
$\mathbf{0}=\begin{aligned} & \text { Speed measurement, servo mode: The actual motor speed list value is used for the FI } \\ & \text { servo mode. The ISD control cannot be switched off in this function. } \\ & \mathbf{1}= \\ & \text { PID actual frequency value: The actual speed of a system is used for speed control. } \\ & \text { This function can also be used for controlling a motor with a linear characteristic curve. } \\ & \text { It is also possible to use an incremental encoder for speed control that is not mounted } \\ & \text { directly onto the motor. P413 - P416 determine the control. }\end{aligned}$
$\mathbf{2}=$ Frequency addition: The speed determined is added to the actual setpoint value.
$\mathbf{3}=$ Frequency subtraction: The speed determined is subtracted from the actual setpoint.
$\mathbf{4 =}$ Maximum frequency: The maximum possible output frequency $/$ speed is limited by the
speed of the encoder.

P326	Rotary encoder transformation ratio		S	
0.01 ... 100.00	If the incremental encoder is not mounted directly onto the motor shaft, then the respectively correct transformation ratio of motor speed to encoder speed must be set.			
$\text { P326 }=\frac{\text { Motor speed }}{\text { Encoder speed }}$				
Only when P325 = 1, 2, 3 or 4, therefore not in Servo mode (motor speed control)				

$0 \ldots 3000 \mathrm{rpm} \quad$ The limit value for a permitted maximum slip error can be set. If this value is reached, the FI $\{0\} \quad$ switches off and indicates error E013.1.

$$
0=O F F
$$

Only when P325 = 0, therefore in Servo mode (motor speed control)

P328	Speed slip error delay		S
$0.0 \ldots 10.0 \mathrm{~s}$	In case the permissible slip error defined in $(\mathrm{P} 327)$ is exceeded, the display of the error   $\{0.0\}$	message E013.1 is suppressed within the limits which can be set here.	
$\boldsymbol{0}=$ OFF			

### 6.1.5 Control terminals



The basic equipment of SK 200E devices does not include an analog input. An analog function can only be implemented by the use of options (Array [-01]...[-05] and [-08]...[-09]) or by use of the digital input 2 or 3 (Array [-06]...[-07]). The following settings are then possible:

For standardisation of actual values: See also (Section 0).
$\mathbf{0}=\mathbf{O f f}$, the analog input has no function. After the FI has been enabled via the control terminals, it will supply the set minimum frequency (P104).
1 = Set point frequency, the specified analog range (P402/P403) varies the output frequency between the set minimum and maximum frequencies (P104/P105).
$\mathbf{2}=$ Frequency addition **, the supplied frequency value is added to the setpoint.
3 = Frequency subtraction**, the supplied frequency value is subtracted from the setpoint.
$4=$ Minimum frequency, is a typical setting value for the function of the potentiometers P1 or P2 (P400 [01] or [02]), which are integrated in the cover of the FI (Section 5.1.3). Standardisation: T _Min.-frequency $=50 \mathrm{~Hz} * \mathrm{U}[\mathrm{V}] / 10 \mathrm{~V}$ ( $\mathrm{U}=$ voltage potentiometer ( P 1 or P2) )
$5=$ Maximum frequency, is a typical setting value for the function of the potentiometers P1 or P2 (P400 [01] or [02]), which are integrated in the cover of the FI (Section 5.1.3). Standardisation: T_Max.-frequency= $100 \mathrm{~Hz} \mathrm{Z}^{*} \mathrm{U}[\mathrm{V}] / 10 \mathrm{~V}$ (U=voltage potentiometer ( P 1 or P2) )
6 = Current value process controller*, activates the process controller analog input is connected to the actual value sensor (compensator, air can, flow volume meter, etc.). The mode is set via the DIP switches of the I/O extension or in (P401).
7 = Nominal value process controller*, as function 6, however the setpoint is specified (e.g. by a potentiometer). The actual value must be specified using another input.

8 = Current frequency $\mathbf{P l}^{*}$,
9 = Current frequency, limited by PI *,

Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set

$10=$ Current frequency, supervised by PI *,
$11=$ Torque current limitation (limiting), depends on parameter (P112), this value corresponds to $100 \%$ of the setpoint value. Attainment of the set limiting value causes a reduction of the output frequency at the limit of the torque current.
$12 \boldsymbol{=}$ Torque current limitation (switch-off), depends on parameter (P112), this value corresponds to $100 \%$ of the setpoint value. The attainment of this set limiting value causes switch-off with error code E12.3.
13 = Current limit (limiting), depends on parameter (P536). This value corresponds to $100 \%$ of the setpoint value. The attainment of the set limiting value causes a reduction of the output voltage in order to limit the output current.
14 = Current limit (switch-off), depends on parameter (P536), this value corresponds to $100 \%$ of the setpoint value. The attainment of this set limiting value causes switch-off with error code E12.4.
$15=$ Ramp time, is a typical setting value for the function of the potentiometers P1 or P2 (P400 [01] or [02]), which are integrated in the cover of the FI (Section 5.1.3). Standardisation: T_Ramp time $=100 \mathrm{~Hz} * \mathrm{U}[\mathrm{V}] / 10 \mathrm{~V}$ (U=voltage potentiometer (P1 or P2))
$16=$ Pre-tension Torque, function which enables a value for the anticipated torque requirement to be entered in the controller (interference factor switching). This function can be used to improve the load take-up of lift equipment with separate load detection.
$17=$ Multiplication, the setpoint is multiplied with the specified analog value. The analog value adjusted to $100 \%$ then corresponds to a multiplication factor of 1.
18 = Curve control (Curve travel calculator), via the external analog input (P400 [-03] or P400 [-04]) or via the BUS (P546 [-01 .. -03]) the master receives the actual speed from the slave. From its own speed, the slave speed and the guide speed, the master calculates the actual setpoint speed, so that neither of the two drives travels faster than the guide speed in the curve.
19 = Servo mode torque, in servo mode, the motor torque can be set or limited using this function.
$\mathbf{2 5}=$ Ratio gearing (Gearing transformation factor), is a multiplier which takes into account a variable transformation of the setpoint value. E.g.: Setting of the transformation between the master and the slave by means of a potentiometer.
$30=$ Motor temperature: enables measurement of the motor temperature with a KTY-84 - temperature sensor (Details in Section 5.3)
33 = Setpoint value torque process controller: for the even distribution of torques to the coupled drive units (e.g.: synchronised roller drive). This function is also possible with the use of ISD control.
*) For further details of the PI and process controller, please refer to Section 9.2.
${ }^{* *}$ ) The limits of these values are formed by the parameters >minimum frequency auxiliary setpoint values< (P410) and the parameter >maximum frequency auxiliary setpoint values< (P411), whereby the limits defined by (P104) and (P105) cannot be undershot or overshot.

Parameter   \{Factory setting\}	Setting	/ Description / Note	Device	Supervisor	Parameter set
$\begin{gathered} \text { P401 } \end{gathered} \begin{array}{r} {[-01]} \\ \ldots \\ {[-06]} \end{array}$	Analog input mode (or Analog ON mode 1)			S	
$0 \ldots 5$	$[-01]=$ External analog input 1, AIN1 of the first I/O extension (SK xU4-IOE).   $[-02]=$ External analog input 2, AIN1 of the first I/O extension (SK xU4-IOE).				
\{ all 0 \}					
only with	[-03] =	External analog input 1 2nd IOE, AIN1 of the second I/O extension (SK xU4-IOE) (= analog input 3).			
SK CU4-IOE or SK TU4-IOE	[-04] =	External analog input 2 2nd IOE, AIN1 of the second I/O extension (SK xU4-IOE) (= analog input 4).			
	[-05] =	reserved			
as of SW 1.2	[-06] =	reserved			

$0=0-10 \mathrm{~V}$ limited: an analog setpoint value, which is smaller than the programmed adjustment 0\% (P402) does not result in the programmed minimum frequency (P104) being undershot. It therefore does not result in a change in the direction of rotation.
$\mathbf{1 = 0} \mathbf{0} \mathbf{- 1 0 V}$ : If there is a setpoint value which is smaller than the programmed adjustment $0 \%$ (P402), this may result in a change in the direction of rotation. Because of this, a reversal of the direction of rotation may be implemented with a simple voltage source and a potentiometer.
e.g. internal setpoint with change of direction of rotation: P402 $=5 \mathrm{~V}, \mathrm{P} 104=0 \mathrm{~Hz}$, potentiometer $0-10 \mathrm{~V} \rightarrow$ change of direction of rotation at 5 V in the middle setting of the potentiometer.

At the moment of reversal (Hysteresis $= \pm$ P505), the drive unit is at a standstill, if the minimum frequency (P104) is less than the absolute minimum frequency (P505). A brake controlled by the FI is applied within the hysteresis range.

If the minimum frequency ( P 104 ) is larger than the absolute minimum frequency (P505), the drive reverses when the minimum frequency is reached. Within the hysteresis range $\pm \mathrm{P} 104$ provides the FI with the minimum frequency ( P 104 ), a brake controlled by the FI is not applied.
$2=0-10 \mathrm{~V}$ controlled: If the minimum adjusted setpoint value (P402) is undershot by $10 \%$ of the difference between (P403) and (P402), the FI output switches off. As soon as the setpoint value is larger than [P402 - (10\% * (P403-P402))], it once again provides an output signal.

E.g.: Setpoint value 4-20mA: P402: Adjustment $0 \%=1 \mathrm{~V}$; P403: Adjustment $100 \%=5 \mathrm{~V}$; $-10 \%$ corresponds to -0.4 V ; i.e. $1 \ldots . .5 \mathrm{~V}(4 \ldots 20 \mathrm{~mA})$ normal operating range, $0.6 \ldots 1 \mathrm{~V}=$ minimum frequency setpoint value, below $0.6 \mathrm{~V}(2.4 \mathrm{~mA})$ the output is switched off.

Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set

## NOTE:

The SK xU4-IOE provides the frequency inverter with a value standardised to $0 . .100 \%$. In addition, the frequency inverter also receives a bit, which confirms that the analog input signal is within the defined limits.

Example: Setpoint value: $4 \ldots 20 \mathrm{~mA}$
$0 . .4 \mathrm{~mA}=0 \% \quad\left(0000_{\text {hex }}\right)$
$20 \mathrm{~mA}=100 \%\left(4000_{\text {hex }}\right)$
$\geq 2 \mathrm{~mA}=$ Bit $\quad$ "Setpoint value valid"
If the " $0-10 \mathrm{~V}$ monitored" mode is selected, the bit "Setpoint value valid" is evaluated and if the setpoint value is undershot by a value of 2 mA , the inverter output is switched off.

NOTE:
Settings of parameters (P402) and (P403) are treated in an additive manner, i.e. they can be used for additional adjustment of the limiting values.
$\mathbf{3}=\mathbf{- 1 0 V} \mathbf{- 1 0 V}$ : If there is a setpoint value which is smaller than the programmed adjustment $0 \%$ (P402), this may result in a change in the direction of rotation. Because of this, a reversal of the direction of rotation may be implemented with a simple voltage source and a potentiometer.
e.g. internal setpoint with change of direction of rotation: P402 $=5 \mathrm{~V}, \mathrm{P} 104=0 \mathrm{~Hz}$, potentiometer $0-10 \mathrm{~V} \rightarrow$ change of direction of rotation at 5 V in the middle setting of the potentiometer.

At the moment of reversal (Hysteresis $= \pm$ P505), the drive unit is at a standstill, if the minimum frequency (P104) is less than the absolute minimum frequency (P505). A brake controlled by the FI is not applied within the hysteresis range.
If the minimum frequency ( P 104 ) is larger than the absolute minimum frequency (P505), the drive reverses when the minimum frequency is reached. Within the hysteresis range $\pm$ P104 provides the FI with the minimum frequency (P104), a brake controlled by the FI is not applied.

4=0-10V with switch-off on error 1: If the $0 \%$ adjustment value in (P402) is undershot, the error message 12.8 "Analog In Min. undershot" is activated. Overshooting of the 100\% adjustment value in (P403) activates the error message 12.9 "Analog In Max. overshot".
Even if the analog value is within the limits defined in (P402) and (P403), the setpoint value is limited to $0-100 \%$.

The monitoring function only becomes active if there is an enable signal and the analog value has reached the valid range ( $\geq$ (P402) or $\leq$ (P403)) for the first time (E.g. Build-up of pressure after switching on a pump).
$5=0-10 \mathrm{~V}$ with switch-off on error 2
See Setting 4 ("0-10V with switch-off on error 1"), however:
With this setting, the monitoring function is active if there is an enable signal and suppression time for the error monitoring has expired. This suppression time is set in parameter (P216).

Parameter   \{Factory setting\}	Setting value / Description / Note		Device	Supervisor	Parameter set
$\begin{gathered} \text { P402 } \end{gathered} \begin{array}{r} {[-01]} \\ \ldots \\ {[-06]} \end{array}$	Analog input adjustment: 0\%			S	
$\begin{aligned} & -50.00 \ldots 50.00 \mathrm{~V} \\ & \{\text { all } 0.00\} \end{aligned}$	$[-01]=$ External analog input 1, AIN1 of the first I/O extension (SK xU4-IOE).   $[-02]=$ External analog input 2, AIN1 of the first I/O extension (SK xU4-IOE).				
	[-03] =	External analog input 1 2nd IOE, AIN1 of the second I/O extension (SK xU4-IOE) (= analog input 3).			
	[-04] =	External analog input 2 2nd IOE, AIN1 of the second I/O extension (SK xU4-IOE) (= analog input 4).			
	[-05] =	reserved			
	[-06] =	reserved			

## ... only with <br> SK CU4-IOE or <br> SK TU4-IOE

This parameter sets the voltage which should correspond with the minimum value of the selected function for the analog input 1 or 2 . In the factory setting (setpoint) this value is equivalent to the setpoint set via P104 >Minimum frequency<.

## Note:

Standardisation of typical signals such as $0(2)-10 \mathrm{~V}$ or $0(4)-20 \mathrm{~mA}$ is carried out via the DIP switches on the I/O-extension module. An additional adjustment of parameters (P402) and (P403) is not made in this case.



6 Parameterisation

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P412	Nominal value process controller		S	P
$\begin{aligned} & -10.0 \ldots 10.0 \mathrm{~V} \\ & \{5.0\} \end{aligned}$	Fixed specification of a setpoint for the process controller that will only occasionally be altered. Only with P400 $=6$ or 7 (PID process controller). Further technical details can be found in Section 9.2.			
P413	PI control P-component		S	P
$\begin{aligned} & 0.0 \ldots 400.0 \% \\ & \{10.0\} \end{aligned}$	This parameter is only effective when the function PI controller actual frequency is selected.   The P-component of the PI controller determines the frequency jump if there is a control deviation based on the control difference.   For example: At a setting of P413 = 10\% and a control difference of $50 \%, 5 \%$ is added to the actual setpoint.			
P414	PI control l-component		S	P
$\begin{aligned} & 0.0 \ldots 3000.0 \% / \mathrm{s} \\ & \{10.0\} \end{aligned}$	This parameter is only effective when the function PI controller actual frequency is selected.   In case of a control deviation, the I-component of the PI controller determines the frequency change, dependent on time.   Note: In contrast to other NORD series, parameter P414 is smaller by a factor of 100 (Reason: better setting ability with small I-components).			
P415	Process controller control limit		S	P
$\begin{aligned} & 0 . . .400 .0 \% \\ & \{10.0\} \end{aligned}$	This parameter is only effective when the function PI process controller is selected. This determines the control limit (\%) after the PI controller.   For further details, see Section 9.2.			
P416	Ramp time, PI setpoint value		S	P
$\begin{aligned} & 0.00 \ldots 99.99 \mathrm{~s} \\ & \{2.00\} \end{aligned}$	This parameter is only effective when the function PI process controller is selected. Ramp for PI setpoint			
P417 $\begin{aligned} & {[-01]} \\ & \\ & {[-02]}\end{aligned}$	Offset, analog output 1		S	P
$\begin{aligned} & -10.0 \ldots 10.0 \mathrm{~V} \\ & \{\text { all } 0.0 \text { \} } \\ & \ldots \text { only with } \\ & \text { SK CU4-IOE or } \\ & \text { SK TU4-IOE } \end{aligned}$	$\begin{array}{ll}{[-01]=} & \text { First IOE, AOUT of the first I/O } \\ {[-02]=} & \text { Second IOE, AOUT of the secon }\end{array}$   In the analog output function an offset can b signal in other equipment.   If the analog output has been programmed the switch-on point and the switch-off point can	ion (SK   extensi   ered to   digital set in th	E)   xU4-IOE)   the processi   then the diff eter (hystere	of the analog   nce between
P418$[-01]$      -02$]$	Function, analog output 1		-	P
$\begin{aligned} & \hline 0 \ldots 33 \\ & \{\text { all } 0\} \end{aligned}$	$\begin{array}{ll}{[-01]=} & \text { First IOE, AOUT of the first I/O extension (SK xU4-IOE) } \\ {[-02]=} & \text { Second IOE, AOUT of the second I/O extension (SK xU4-IOE) }\end{array}$			


Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set

... only with
SK CU4-IOE or
SK TU4-IOE

Analog functions (max. load: 5 mA analog):
An analog ( $0 \ldots+10$ Volt) voltage can be obtained from the control terminals (max. 5 mA ). Various functions are available, whereby:

0 Volt analog voltage always corresponds to $0 \%$ of the selected value.
10 V always corresponds to the motor nominal values (unless otherwise stated) multiplied by the P419 standardisation factor, e.g.:

$$
\Rightarrow 10 \text { Volt }=\frac{\text { Motor nominal value } \cdot \mathrm{P} 419}{100 \%}
$$

For standardisation of actual values: See also (Section 9.10).
$0=$ No function, no output signal at the terminals.
$1=$ Actual frequency*, the analog voltage is proportional to the FI output frequency. (100\%=(P105))
$\mathbf{2}=$ Actual speed*, this is the synchronous speed calculated by the FI based on the existing setpoint. Load-dependent speed fluctuations are not taken into account. If Servo mode is being used, the measured speed will be output via this function. (100\%=(P202))
3 = Current*, the effective value of the output current supplied by the FI. (100\%=(P203))
$4=$ Torque current*, displays the motor load torque calculated by the FI. $(100 \%=(\mathrm{P} 112))$
$5=$ Voltage ${ }^{*}$, the output voltage supplied by the FI. (100\%=(P204))
6 = D.c. link circuit voltage, the DC voltage in the FI. This is not based on the nominal motor data. 10 V Volt, standardised at $100 \%$, is equivalent to 450 V DC ( 230 V mains) or 850 Volt DC (480V mains)!
7 = Value of P542, the analog output can be set using parameter P542 independently of the actual operating status of the FI. For example, with Bus switching (parameter command) this function can supply an analog value from the FI, which is triggered by the control unit.
8 = Apparent power*, the actual apparent power calculated by the FI. $\left(100 \%=(\right.$ P203 $) \star$ (P204) respectively $\left.=(\mathrm{P} 203)^{\star}(\mathrm{P} 204)^{\star} \sqrt{3}\right)$
$9=$ Real power *, the actual effective power calculated by the FI. $\left(100 \%=(\mathrm{P} 203)^{\star}(\mathrm{P} 204)^{\star}(\mathrm{P} 206)\right.$ respectively $\left.=(\mathrm{P} 203)^{\star}(\mathrm{P} 204) \star(\mathrm{P} 206)^{\star} \sqrt{3}\right)$
$10=$ Torque [\%]: the actual torque calculated by the FI (100\%=Nominal motor torque).
11 = Field [\%] ${ }^{*}$, the actual field in the motor calculated by the FI.
$12=$ Actual frequency $\pm^{*}$, the analog voltage is proportional to the output frequency of the FI , whereby the zero point is shifted to 5 V . For rotation to the right, values between 5 V and 10 V are output, and for rotation to the left values between 5 V and 0 V .
$13=$ Actual motor rotation speed $\pm^{*}$, is the synchronic rotation speed calculated by the FI , based on the current setpoint, where the null point is shifted to 5 V . For clockwise directions of rotation, values from 5-10V are output. For anticlockwise rotation, values from $5 \mathrm{~V}-\mathrm{OV}$. If servo mode is used, the measured speed is output via this function.
$\mathbf{1 4}=$ Torque [\%] $\pm^{*}$, is the actual torque calculated by the FI , whereby the zero point is shifted to 5 V . For drive torques, values between 5 V and 10 V are output, and for generator torque, values between 5 V and 0 V .
$30=$ Setpoint frequency before ramp, displays the frequency produced by any upstream controllers (ISD, PID, etc.). This is then the setpoint frequency for the power stage after it has been adjusted by the acceleration or braking ramp (P102, P103).
31 = Output via BUS PZD, the analog output is controlled via a bus system. The process data is directly transferred (P546, P547, P548).
$32 \boldsymbol{=}$ Setpoint frequency motor potentiometer
*) Values based on the motor data (P201...), or which are calculated from this.

Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set		
P419 [-01]						
$[-02]$						Analog output scal.
:---						
(Standardisation, analog output 1)						


| P420 | $[-01]$ <br> $\ldots$ <br> $[-04]$ | Digital inputs |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- |

0 ... 72
$\{[-01]=1\}$
$\{[-02]=2\}$
$\{[-03]=4\}$
$\{[-04]=5\}$

In the SK 200E, up to 4 freely programmable digital inputs are available. The only restriction is with the versions SK 215E and SK 235E. Here, the fourth digital input is always the input for the function "Safe Stop".
[-01] = Digital input 1 (DIN1), Enable right as factory setting, control terminal 21
[-02] = Digital input 2 (DIN2), Enable left as factory setting, control terminal 22
[-03] = Digital input 3 (DIN3), Fixed frequency 1 (P465 [-01]) as factory setting, control terminal 23
[-04] = Digital input 4 (DIN4), Fixed frequency 2 (P465 [-02]) as factory setting, not with SK 215/235E $\rightarrow$ "Safe Stop", control terminal 24

Various functions can be programmed. These can be seen in the following table.
When using DIN2 and DIN3 as rotary encoder evaluation, it is essential to set the functions of the digital inputs DIN2 and DIN3 (Parameter (P420 [-02, -03])) to "No Function". (For using the DIPswitches of the frequency inverter for parametrisation, please lock at section 5.1.2 .)
The additional digital inputs of the I/O- extensions (SK xU4-IOE) are administered via the parameter "Bus I/O In Bit (4...7)" - (P480 [-05] ... [-08]) for the first I/O extension, and via the parameter "Bus I/O In Bit (0...3)" - (P480 [-01] ... [-04]) for the second I/O extension.

## List of the possible functions of the digital inputs P420 [01]... [-04]

Value	Function	Description	Signal
$\mathbf{0 0}$	No function	Input switched off.	---
$\mathbf{0 1}$	Enabled right	The FI delivers an output signal with the rotation field right if a   positive setpoint is present. $0 \rightarrow 2$ Flank $(\mathrm{P} 428=0)$	High
$\mathbf{0 2}$	Enable left	The FI delivers an output signal with the rotation field left if a   positive setpoint is present. $0 \rightarrow 2$ Flank $(P 428=0)$	High

If the drive is to start up automatically when the mains is switched on (P428 = 1) a permanent High level for enabling must be provided (supply control terminal 21 with 24 V ).
If the functions "Enable right" and "Enable left" are actuated simultaneously, the FI is blocked.

Value	Function	Description	Signal
03	Phase seq. reversal   (Change rotation direction)	Causes the rotation field to change direction in combination with Enable right or left.	High
$04^{1}$	Fixed frequency 1	The frequency from P465 [01] is added to the actual setpoint value.	High
$05{ }^{1}$	Fixed frequency 2	The frequency from P465 [02] is added to the actual setpoint value.	High
$06{ }^{1}$	Fixed frequency 3	The frequency from P465 [03] is added to the actual setpoint value.	High
$07{ }^{1}$	Fixed frequency 4	The frequency from P465 [04] is added to the actual setpoint value.	High
	If several fixed frequencies are actuated simultaneously, then they are added with the correct sign. In addition, the analog setpoint (P400) and if required, the minimum frequency (P104) are added.		
08	Parameter set switching 1	Selection of the active parameter set 1... 4 (P100)	High
09	Maintain the frequency	During the acceleration or deceleration phase, a Low level will cause the actual output frequency to be "held". A High level allows the ramp to proceed.	Low
$10^{2}$	Voltage disable	The Fl output voltage is switched off; the motor runs down freely.	Low
$11^{2}$	Quick stop	The FI reduces the frequency according to the programmed quick stop time (P426).	Low
$12{ }^{2}$	Fault acknowledgement	Error acknowledgement with an external signal. If this function is not programmed, a fault can also be acknowledged by a low enable setting (P506).	$\begin{aligned} & 0 \rightarrow 1 \\ & \text { Flank } \end{aligned}$
$13{ }^{2}$	PTC resistor input	Only with the use of a temperature monitor (bimetal switching contact). Switch-off delay $=2 \mathrm{sec}$, warning after 1 sec .	High
$14{ }^{2}$	Remote control	With bus system control, low level switches the control to control via control terminals.	High
15	Jog frequency ${ }^{1}$	The fixed frequency value can be adjusted using the HIGHER/LOWER and OK keys (P113), if control is via the SimpleBox or ParameterBox.	High
16	Motor potentiometer	As in setting 09, however, the frequency is not maintained below the minimum frequency P104 and above the maximum frequency P105.	Low
17	Parameter set switching 2	Selection of the active parameter set 1... 4 (P100)	High
$18{ }^{2}$	Watchdog	Input must see a high flank cyclically (P460), otherwise error E012 will cause a shutdown. Function starts with the 1st High flank.	$0 \rightarrow 1$   Flank
19	... 20 reserved		
21	... 25 reserved for Posicon		
26		Via DIN 2 and DIN 3impulses which are proportional to an analog signal can be evaluated with this setting. The function of this signal is determined in parameter P400 [-06] or [-07].	$\begin{aligned} & \text { Impulses } \\ & \approx 1.6- \\ & 16 \mathrm{kHz} \end{aligned}$
27		The conversion $0-10 \mathrm{~V}$ to impulses can be carried out via the Customer Unit SK CU/TU4-24V-... This module includes an analog input and an impulse output (ADC).   In setting \{ 28 \} a reversal of the direction of rotation takes place with an analog value $<5 \mathrm{~V}$.   An application example is described in Section 3.4.2.	
28			
30	Inhibit PID	Switching the PID controller / process controller function on and off (High = ON)	High
		... continued on the next page	



Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set
P426	Quick stop time		S	P

$0 \ldots 320.00 \mathrm{~s} \quad$ Setting of the stop time for the quick stop function that can be triggered either via a digital input, the bus control, the keyboard or automatically in case of a fault.

Quick stop time is the time for the linear frequency decrease from the set maximum frequency (P105) to 0 Hz . If an actual setpoint $<100 \%$ is being used, the quick stop time is reduced correspondingly.

| P427 Quick stop on error |  | S |  |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | Activation of automatic emergency stop following error |  |

0 ... 2 Activation of automatic emergency stop following error
$\{0\} \quad \mathbf{0}=$ Disabled: Automatic quick stop following error is deactivated
1 = reserved
2 = Enabled: Automatic quick stop following fault

| P428 Automatic starting |  | S |  |
| :--- | :--- | :--- | :--- | :--- |

$0 . .1$
\{ 0 \}

In the standard setting (P428 = 0 $\boldsymbol{\rightarrow}$ Off) the inverter requires a flank for enable (signal change from "Low $\rightarrow$ High") at the applicable digital input.
In the setting On $\rightarrow \mathbf{1}$ the FI reacts to a High level. This function is only possible if the FI is controlled using the digital inputs. (see P509=0/1)
In certain cases, the FI must start up directly when the mains are switched on. This means that P428 = $\mathbf{1} \boldsymbol{\rightarrow}$ On can be set. If the enable signal is permanently switched on, or equipped with a cable jumper, the FI starts up immediately.

NOTE: The "Automatic start" function can only be used if a digital input of the frequency inverter (DIN 1 ... DIN 4) is parameterised to the function "Enable right" or "Enable left" and this input is permanently set to "High". The digital inputs of the Technology Unit modules (e.g.: SK CU4 - IOE) do not support this "automatic start" function.

NOTE: The "Automatic start" can only be activated if the frequency inverter has been parameterised to local control ((P509) setting \{ 0$\}$ or $\{1\}$ ).

Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set
P434$[-01]$   $[-02]$	Digital output function			
$0 \ldots 39$	$[-01]=$	Digital output 1, Digital output of the frequency inverter		
$\{7\}$	$[-02]=$	reserved		

Control terminals $\mathbf{1} / 40$ (Section 2.8.2): The settings 3 to 5 and 11 work with $10 \%$ hysteresis, i.e. the relay contact closes (function 11 does not deliver) on reaching the limiting value 24 V and switches this off again if a 10\% lower value is undershot (function 11 on again).

This behaviour can be inverted with a negative value in P435.

Setting / Function	Output ...   for limiting value or function (see also P435)
$0=$ No function	Low
1 = External brake, to control an external 24 V brake relay (max. 200mA). The relay switches at a programmed absolute minimum frequency (P505).   For typical brakes a setpoint delay of $0.2-0.3 \mathrm{sec}$ should be programmed (see also P107/P114).   A typical motor brake (105-180-205V) can be connected directly via the control terminals $79 \mathrm{MB}+/ 80 \mathrm{MB}$ - (Section 2.8.2).	High
$\mathbf{2}=$ Inverter is working, the output indicates voltage at the FI output (UV - W).	High
3 = Current limit, based on the setting of the motor rated current in (P203). This value can be adjusted with the standardisation (P435).	High
4 = Torque current limit, based on motor data settings in P203 and P206. Signals a corresponding torque load on the motor. This value can be adjusted with the standardisation (P435).	High
5 = Frequency limit, based on motor nominal frequency setting in P201. This value can be adjusted with the standardisation (P435).	High
6 = Level with setpoint (Setpoint reached), indicates that the FI has completed the frequency increase or decrease. Setpoint frequency $=$ actual frequency! From a difference of $1 \mathrm{~Hz} \rightarrow$ Setpoint value not achieved - signal Low.	High
7 = Fault, general error message, error is active or not yet acknowledged.   $\rightarrow$ Error - Low (Ready - High)	Low
8 = Warning: general warning, a limit value was reached that could lead to a later shutdown of the FI.	Low
9 = Overcurrent warning: At least 130\% of the nominal FI current was supplied for 30 seconds.	Low
$10=$ Motor overtemperature warning: The motor temperature is evaluated. $\rightarrow$ Motor is too hot. Warning occurs immediately, overheating switchoff after 2 seconds.	Low
11 = Torque current limit/Current limit active warning: The limiting value in P112 or P536 has been reached. A negative value in P435 inverts the reaction. Hysteresis $=10 \%$.	Low
12 = Value of P541 - external control, the output can be controlled with parameter P541 (Bit 0) independently of the actual operating status of the FI .	High
13 = Torque current limit generator /Generator torque limit active: Limit value in P112 has been reached in the generator range. Hysteresis $=10 \%$.	High
18 = Inverter ready: The FI is in standby state. After being enabled it gives an output signal.	High


Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
	19 = ... 29 reserved		For Posicon functions see BU 0210	
	30 = Status Digital-In $\mathbf{1}^{*}$		High	Details for the use of the bus systems can be found in the relevant supplementary bus manual.
	31 = Status Digital-In $\mathbf{2}^{*}$		High	
	32 = Status Digital-In 3*		High	
	33 = Status Digital-In 4*		High	
	39 = STO inactive *		High	
	*) $($ P546[-01]...[-03]) $=20$			
P435 $\quad \begin{aligned} & {[-01]} \\ & {[-02]}\end{aligned}$	Dig. out. scaling   (Standardisation of digital output)			
$\begin{aligned} & -400 \ldots 400 \% \\ & \{100\} \end{aligned}$	$\begin{array}{ll} {[-01]=} & \text { Digital output 1, Digital output of the frequency inverter } \\ {[-02]=} & \text { reserved } \end{array}$			
	Adjustment of the limit values of the output fu will be output negative.   Reference to the following values:   Current limit (3) $=x[\%] \cdot$ P203 $>$ Rate   Torque current limit (4) $=x$ [\%] $\cdot$ P203   Frequency limit (5) $=x[\%] \cdot$ P201 $>R$	ction.   motor   P206   ed mo	or a negative value,   urrent<   alculated rated motor frequency<	output function   rque)
P436 $\quad \begin{aligned} & {[-01]} \\ & {[-02]}\end{aligned}$	Digital output hysteresis		S	
$\begin{aligned} & 0 \ldots 100 \% \\ & \{10\} \end{aligned}$	[-01] = Digital output 1, Digital output of the frequency inverter   [-02] = reserved   Difference between switch-on and switch-off point to prevent oscillation of the output signal.			
P460	Time watchdog		S	
$\begin{aligned} & 0.0 / 0.1 \ldots 250.0 \mathrm{~s} \\ & \{10.0\} \end{aligned}$	$\mathbf{0 . 1} \ldots \mathbf{2 5 0 . 0}=$ The time interval between the expected watchdog signals (programmable function of digital inputs P420-P425). If this time interval elapses without an impulse being registered, a switch-off and error message E012 are actuated.			

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Parameter \\
\{Factory setting\}
\end{tabular} \& Setting value / Description / Note \& Device \& Supervisor \& Parameter set \\
\hline P464 \& Fixed frequency mode \& \& S \& \\
\hline \[
\begin{aligned}
\& 0 \ldots 1 \\
\& \{0\}
\end{aligned}
\] \& \multicolumn{4}{|l|}{\begin{tabular}{l}
This parameter determines the handling of fixed frequencies. With addition, simultaneously controlled values are added together. Otherwise, each value is output separately, whereby with multiple control the highest frequency value is always output. \\
\(0=\) Addition to main setpoint value (Addition of frequency to main setpoint value) \\
\(1=\) Equal to main setpoint value (No addition / Fixed frequency is the main setpoint value)
\end{tabular}} \\
\hline P465 \begin{tabular}{r}
{\([-01]\)} \\
\(\ldots\) \\
{\([-15]\)}
\end{tabular} \& Fixed frequency I Array \& \& \& \\
\hline \[
\begin{aligned}
\& -400.0 \ldots 400.0 \mathrm{~Hz} \\
\& \{[-01]=5.0\} \\
\& \{[-02]=10.0\} \\
\& \{[-03]=20.0\} \\
\& \{[-04]=35.0\} \\
\& \{[-05]=50.0\} \\
\& \{[-06]=70.0\} \\
\& \{[-07]=100.0\} \\
\& \{[-08]=0.0\} \\
\& \{[-09]=-5.0\} \\
\& \{[-10]=-10.0\} \\
\& \{[-11]=-20.0\} \\
\& \{[-12]=-35.0\} \\
\& \{[-13]=-50.0\} \\
\& \{[-14]=-70.0\} \\
\& \{[-15]=-100.0\}
\end{aligned}
\] \& \begin{tabular}{l}
In the array levels, up to 31 different fixed for the functions 50... 54 in binary code for \\
[-01] = Fixed frequency 1 / Array 1 \\
[-02] = Fixed frequency 2 / Array 2 \\
[-03] = Fixed frequency 3 / Array 3 \\
[-04] = Fixed frequency 4 / Array 4 \\
[-05] = Fixed frequency / Array 5 \\
[-06] = Fixed frequency / Array 6 \\
[-07] = Fixed frequency / Array 7 \\
[-08] = Fixed frequency / Array 8
\end{tabular} \& uencies digital inp [-09] [-10] [-11] \& \begin{tabular}{l}
, which in t \\
quency / Ar \\
quency / Ar
\end{tabular} \& an be encoded \\
\hline P466 \& Minimum frequency, process controller \& \& S \& P \\
\hline \[
\begin{aligned}
\& -400.0 \ldots 400.0 \mathrm{~Hz} \\
\& \{0.0\}
\end{aligned}
\] \& \multicolumn{4}{|l|}{With the aid of the minimum frequency process controller the control ratio can also be kept to a minimum ratio, even with a master value of "zero", in order to enable adjustment of the compensator. Further details in P400 and Section 9.2.} \\
\hline P475

$[-01]$
$\ldots$ \& Switch-on-I Switch-off delay \& \& S \& <br>

\hline \[
$$
\begin{aligned}
& -30.000 \ldots 30,000 \mathrm{~s} \\
& \{0.000\}
\end{aligned}
$$

\] \& \multicolumn{4}{|l|}{| $[-02]=$ Digital input 2 | Positive values $=$ switch-on delayed |
| :--- | :--- |
| $[-03]=$ Digital input 3 | Negative values $=$ switch-off delayed |
| $[-04]=$ Digital input 4 |  |} <br>

\hline
\end{tabular}

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
$\begin{array}{ll} \text { P480 } & {[-01]} \\ & \ldots \\ & {[-12]} \\ \hline \end{array}$	Function of Bus I/O In Bits			
$\begin{aligned} & 0 \ldots 72 \\ & \{[-01]=01\} \\ & \{[-02]=02\} \\ & \{[-03]=05\} \\ & \{[-04]=12\} \\ & \{[-05 \ldots-12]=00\} \end{aligned}$	The Bus I/O In Bits are perceived (P420).   These I/O bits can also be used in (Bit $0 \ldots 3$ ) or the I/O extension (SK x   [-01] = Bus I AS-i Dig In1 (Bus IO In   [-02] = Bus / AS-i Dig In2 (Bus IO In   [-03] = Bus I AS-i Dig In3 (Bus IO In   [-04] = Bus / AS-i Dig In4 (Bus IO In   [-05] = Bus / IOE Dig $\ln 1$ (Bus IO In   [-06] = Bus / IOE Dig In2 (Bus IO In   [-07] = Bus / IOE Dig In3 (Bus IO In   [-08] = Bus / IOE Dig $\ln 4$ (Bus IO In   [-09] = Flag 1   [-10] = Flag 2   [-11] = Bit 8 BUS control word   [-12] = Bit 9 BUS control word	inputs. n with the ${ }^{\text {a }}$. or DI 1 or DI 2 or DI 3 4 or. DI 4 f the firs of the firs of the firs of the firs	be set to the   terface (SK 0 ... 3).   ond SK xU4-IO   ond SK xU4-IO   ond SK xU4-IO   ond SK xU4-I   IOE (Digln 05))   IOE (Digln 06))   IOE (Digln 07))   OE (DigIN 08))	ame functio   or SK 235   (igln 09))   igln 10))   igln 11))   (Digln 12))

The possible functions for the Bus In Bits can be found in the table of functions for the digital inputs in parameter (P420).



NOTE: Details for the use of the bus systems can be found in the relevant supplementary bus manual.

### 6.1.6 Additional parameters

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P501	Inverter name			
$\begin{aligned} & \mathrm{A} . . . \mathrm{Z}_{\text {(char) }} \\ & \{0\} \end{aligned}$	Free input of a designation (name) for the device (max. 20 characters). With the the frequency inverter can be uniquely identified for processing with NordCon software or within a network.			
$\begin{aligned} & \text { P502 } \end{aligned} \begin{array}{r} {[-01]} \\ \ldots \\ {[-03]} \end{array}$	Value master function		S	P
$\begin{aligned} & 0 \ldots 21 \\ & \{\text { all } 0\} \end{aligned}$	[-01] = Master value $1 \quad$ [-02] = Master value 2		[-03] = Master value 3	

Selection of possible setting values for master values:
$0=$ Off
$10=\ldots 11$ reserved
1 = Actual frequency
$12=$ Bus IO Out Bits 0-7
2 = Actual speed
13 = ... 16 reserved
3 = Current
$17=$ Value of analog input 1 (first IOE)
4 = Torque current
$18=$ Value of analog input 2 (first IOE)
$5=$ Status Digital IO
$19=$ Setpoint frequency master value
6 = ... 7 reserved
$\mathbf{2 0}$ = Setpoint frequency after ramp, master value
8 = Setpoint frequency
21 = Actual frequency without slip, master value
$22=$ Speed encoder

| P503 Leading function output |  | S |  |
| :---: | :---: | :---: | :---: | :---: |
| 0.3 | Activation |  |  |

\{ 0 \}
Activation of output of the master value onto the system bus (master functionality). Specification of the communication modes on the system bus for ParameterBox and Nord Con.

The definition of the master value or values is carried out in parameter P502.
$0=0 f f$
No control word and master value output.
If no BUS option (e.g. SK xU4-IOE) is connected to the system bus, only the device directly connected to the ParameterBox or Nord Con is visible.

## 1 = CANopen (system bus)

Control word and master values are transferred to the system bus. If no bus option (e.g. SK xU4-IOE) is connected to the system bus, only the device directly connected to the ParameterBox or Nord Con is visible.

## 2 = System bus active

 No control word and master value output. All FIs connected to the system bus are visible in the ParameterBox or Nord Con, even if no bus option is connected. Prerequisite: all FIs must be set to this mode.3 = CANopen + System bus active Control word and master values are transferred to the system bus. All FIs connected to the system bus are visible in the PameterBox or Nord Con, even if no bus option is connected. Prerequisite: all other FIs must be set to mode $\{2\}$ "System bus active"

Parameter   $\{$ Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set
P504	Pulse frequency		S	
$3.0 \ldots 16.0 \mathrm{kHz}$	The internal pulse frequency for actuating the power component can be changed with this   parameter. A higher setting reduces motor noise, but leads to increased EMC emissions and   reduction of the possible motor nominal torque.			
$\{6.0\}$				

NOTE: The radio interference suppression limiting curve A1 according to EN55011 is complied with at a setting of 6.0 kHz on condition that the wiring guidelines are complied with. For further details, see Section 9.4 EMC limit value classes.
NOTE: Raising the pulse frequency leads to a reduction of the possible output current, depending on the time ( $I^{2}$ t curve). For further details, see Section 9.5 Reduced output power.

| P505 Absolute minimum frequency |  | S | P |
| :--- | :--- | :--- | :--- | :---: |

$0.0 \ldots 10.0 \mathrm{~Hz} \quad$ Gives the frequency value that cannot be undershot by the FI. If the setpoint is smaller than the \{ 2.0 \} absolute minimum frequency, the FI switches off or changes to 0.0 Hz .

At the absolute minimum frequency, braking control (P434) and the setpoint delay (P107) are actuated. If a setting value of "Zero" is selected, the brake relay does not switch during reversing.

When controlling lift equipment, this value should be set at a minimum of 2 Hz . From 2 Hz , the current control of the Fl operates and a connected motor can supply sufficient torque.

NOTE: Output frequencies $<4.5 \mathrm{~Hz}$ result in a reduced current overload capacity. For further details, see Section 9.5 power derating.

| P506 | Automatic error <br> acknowledgement | S |  |
| :--- | :--- | :--- | :--- | :--- |

$0 \ldots 7$ In addition to the manual error acknowledgement, an automatic acknowledgement can also be selected.
$0=$ No automatic error acknowledgement
1 ... 5 = Number of permissible automatic error acknowledgments within one mains-on cycle. After mains off and switch on again, the full amount is again available.
6 = always, an error message will be acknowledged automatically if the cause of the error is no longer present.
7 = quit disable (via enable deactivated), acknowlegement is only possible with the OK key or by switching off the mains. Acknowledgement is not implemented by removing the enable!

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P509	Source control word		S	
$0 . . .4$	Selection of the interface via which the FI is controlled.			
\{ 0 \}	$0=$ Control terminals or keyboard control ** with the SimpleBox (if P510=0), the ParameterBox or via BUS I/O Bits.			
	1 = Control terminals only *, the FI can only be controlled via the digital and analog input signals or via the Bus I/O Bits.			
	$\mathbf{2}=$ USS* *, the control signals (enable, rotation direction, etc.) are transferred via the RS485 interface, the setpoint via the analog input or the fixed frequencies.			
	3 = System bus*			
	4 = System bus broadcast *			
	*) Keyboard control (SimpleBox, ParameterBox, PotentiometerBox) is blocked, parameterisation is still possible.			
	${ }^{* *}$ ) If the communication during keyboard control is interrupted (time out 0.5 sec ), the FI will block without an error message.			

NOTE: For details of the optional bus systems, please refer to the relevant supplementary bus manuals (BU02x0).

- www.nord.com -

As an alternative to parameterisation, switchover to system bus broadcast can also be made via DIP switch 3.


Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set
$\mathbf{P 5 1 3}$	Telegram timeout (system bus)		S	
$-0.1 / 0.0 /$	Monitoring of the system bus. Following receipt of a valid telegram, the next one must arrive   $0.1 \ldots 100.0 \mathrm{~s}$   within the set period. Otherwise the FI reports an error and switches off with the error message			
$\{0.0\}$	E010 >Bus Time Out<.			

## Note:

As the transfer rate of the system bus must remain at 250kBaud (Parameter (P514)), a minimum monitoring time of 0.3 s must be set. Otherwise the FI will immediately go into error status.


NOTE: If up to four SK 200E are to be linked via the system bus, the addresses must be set as follows $\rightarrow \mathrm{FI} 1=32, \mathrm{FI} 2=34, \mathrm{FI} 3=36, \mathrm{FI} 4=38$.

The system bus addresses should be set via the DIP switches $1 / 2$ (Section 5.1.1).


Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P519	Skip frequency area 2		S	P
$\begin{aligned} & 0.0 \ldots 50.0 \mathrm{~Hz} \\ & \{2.0\} \end{aligned}$	Masking range for the >Masking frequency $2<$ P518. This frequency value is added and subtracted from the masking frequency.   Masking frequency range 2: P518-P519 to P518 + P519			
P520	Flying start		S	
$\begin{aligned} & 0 \ldots 4 \\ & \{0\} \end{aligned}$	This function is required to connect the FI to motors which are already rotating, e.g. in fan drives. Motor frequencies $>100 \mathrm{~Hz}$ are only picked up in speed controlled mode (Servo mode P300 = ON).   $0=$ Switched off, no flying start.   1 = Both directions, the Fl looks for a speed in both directions.   2 = Direction of setpoint, only search in the direction of the existing setpoint.   3 = Both directions after fault, only after mains failure and faults.   4 = Direction of setpoint after fault, only after mains failure and faults.   NOTE: For physical reasons, the flying start only operates above $1 / 10$ of the nominal speed of rotation (P202) or a minimum of 10 Hz . For example, this means a minimum speed of rotation of 300 rpm for a 4 -pole 50 Hz motor.			
P521	Flying start resolution		S	P
$\begin{aligned} & 0.02 \ldots 2.50 \mathrm{~Hz} \\ & \{0.05\} \end{aligned}$	Using this parameter, the flying start search increment size can be adjusted. Values that are too large affect accuracy and causes the FI to cut out with an overcurrent report. If the values are too small, the search time is greatly extended.			
P522	Flying start offset		S	P
$\begin{aligned} & -10.0 \ldots 10.0 \mathrm{~Hz} \\ & \{0.0\} \end{aligned}$	A frequency value which is added to the frequency value found, e.g. to remain in the motor range and so avoid the generator range and therefore the chopper range.			
P523	Factory setting			
$\begin{aligned} & 0 \ldots 3 \\ & \{0\} \end{aligned}$	By selecting the appropriate valu range is entered in the factory parameter automatically returns to   $0=$ No change:Does not chan   1 = Load factory settings: Th setting. All originally para   2 = Factory setting without bus parameters, are reset to   3 = Factory setting without the motor data, are reset	ming it the se   eterisati   aramete   a is lost   eters of ting.   ll param setting.	K key, the been made   the FI reve   ency inverte   he frequency	ted parameter value of the   the factory   not the bus   rter, but not


P533	Factor I't Motor		S

50 ... 150 \%
The motor current for the $I^{2}$ t motor monitoring P535 can be weighted with the parameter P533. Larger factors permit larger currents.

Parameter   \{Factory setting	Setting value / Description / Note	Device	Supervisor	Parameter   set	
P534	$[-01]$   $[-02]$	Torque disconnection limit		S	P

$25 \ldots 400 \% / 401$ Via this parameter both the drive [-01] and the generator switch-off value [-02] can be \{ all 401 \} adjusted.
If $80 \%$ of the set value is reached, a warning status is set. At $100 \%$ switch-off is performed with an error message.

Error 12.1 is given on exceeding the motor switch-off limit and E12.2 on exceeding the generator switch-off limit.
[-01] = motor switch-off limit
[-02] = generator switch-off limit
$401=$ OFF, means that this function has been disabled.

P535 $I^{2} t$ Motor			

0 ... 24
\{0 \}

The $I^{2} \mathrm{t}$ motor function can now be set in a differentiated manner. Up to four curves with three different triggering times can be set. The trigger times are based on classes 5, 10 and 20 for semiconductor switching devices.
All curves run from OHz to half of the nominal motor frequency (P201). The full nominal current is available from half of the nominal frequency upwards.
$0=I^{2} t$ Motor Off: Monitoring is inactive

Switch-off class 5, 60 s at $1.5 \mathrm{I}_{\mathrm{N}}$		Switch-off class 10, 120 s at $1.5 \mathrm{x} \mathrm{I}_{\mathrm{N}}$		$\begin{aligned} & \text { Switch-off class } 20, \\ & 240 \mathrm{~s} \text { at } 1.5 \mathrm{x} \mathrm{I}_{\mathrm{N}} \end{aligned}$	
$\mathrm{I}_{\mathrm{N}}$ at OHz	P535 =	$\mathrm{I}_{\mathrm{N}}$ at OHz	P535 =	$\mathrm{I}_{\mathrm{N}}$ at 0Hz	P535 =
100\%	1	100\%	9	100\%	17
90\%	2	90\%	10	90\%	18
80\%	3	80\%	11	80\%	19
70\%	4	70\%	12	70\%	20
60\%	5	60\%	13	60\%	21
50\%	6	50\%	14	50\%	22
40\%	7	40\%	15	40\%	23
30\%	8	30\%	16	30\%	24

NOTE: For switch-off classes 10 and 20 , care must be taken that the FI has a sufficiently high overload capacity.


Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set
P537	Pulse disconnection		S	

10 ... $200 \%$ / 201 This function prevents rapid shutdown of the FI according to the load. With the pulse switch-off \{150\} enabled, the output current is limited to the set value. This limitation is implemented by brief switching off of individual output stage transistors, the actual output frequency remains unchanged.
10...200\% = Limit value related to the FI current rating
$\mathbf{2 0 1}$ = Function is disabled; the FI supplies the maximum possible current.

NOTE: The value set here can be undershot with a smaller value in P536.
For smaller output frequencies ( $<4.5 \mathrm{~Hz}$ ) or higher pulse frequencies ( $>6 \mathrm{kHz}$ or $8 \mathrm{kHz}, \mathrm{P} 504$ ) the pulse switch-off by the power reduction (see Section 8.3) can be undershot.

NOTE: If the pulse switch-off is disabled ( $P 537=201$ ) and a high pulse frequency is selected in parameter P504, the FI automatically reduces the pulse frequency when the power limit is reached. If the load on the FI is again reduced, the pulse frequency increases to the original value again.

P539	Check output voltage		S	P
0.3	This			

This protective function monitors the output current at the U-V-W terminals and checks for plausibility. In cases of error, the error message E016 is output.

0 = Disabled: Monitoring is not active.
$\mathbf{1}=$ Only motor phase errors: The output current is measured and checked for symmetry. If an imbalance is present, the FI switches off and outputs the error message E016.
$\mathbf{2}=$ Only magnetisation monitoring: At the moment the FI is switched on, the level of the excitation current (field current) is checked. If insufficient excitation current is present, the FI switches off with the error message E016. A motor brake is not released in this phase.
3 = Motor phase + magnetisation monitoring: as 1 and 2 combined

NOTE: This function can also be used as an additional protective function for lifting applications, but is not permissible on its own as protection for persons.

Parameter   \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter   set
P540	Mode phase sequence		S	P

$0 \ldots 7 \quad$ For safety reasons this parameter can be used to prevent a rotation direction reversal and therefore the incorrect rotation direction.
This function does not operate if the position control is active ( $\mathrm{P} 600 \neq 0$ ).

## $\mathbf{0}=$ No rotation direction limitation

1 = Disable phase sequence key, rotation direction change key $\curvearrowright$ of the SimpleBox is locked
$2 \mathbf{=}$ To the right only*, only right-hand field rotation direction is possible. The selection of the "incorrect" rotation direction leads to the output of the minimum frequency P104 with the field of rotation R .
$3=$ To the left only*, only a left-hand field rotation direction is possible. The selection of the "incorrect" rotation direction leads to the output of the minimum frequency P104 with the field of rotation L .
4 = Enable direction only, rotation direction is only possible according to the enable signal, otherwise OHz is output.
5 = Right Orient. Contr. (only right-hand running monitored) *, only a right-hand field rotation is possible. The selection of the "incorrect" rotation direction leads to a switchoff (control lock) of the FI. If necessary, care should be taken that the setpoint ( $>\mathrm{f}_{\mathrm{min}}$ ) is sufficiently high.
6 = Right Orient. Contr. (only left-hand running monitored) *, only a left field rotation is possible. The selection of the "incorrect" rotation direction leads to a switch-off (control lock) of the FI. If necessary, care should be taken that the setpoint ( $>\mathrm{f}_{\text {min }}$ ) is sufficiently high.
7 = Only enabled direction controlled, rotation is only possible in the direction of the enable signal, otherwise the FI is switched off.
*) Applies for control via keyboard and control terminals.

P541	Set digital			S	
$\begin{aligned} & 000 \ldots 1 \mathrm{FF}_{\text {(hex) }} \\ & \{000\} \end{aligned}$	This function $p$ of the frequency "External contro   This function can   Bit $0=$ Digital   Bit $1=$ Bus/AS   Bit $2=$ Bus/AS   Bit 3 = Bus/AS   Bit $4=$ Bus/AS	he op er sta be us   0   1   2   3	ntrol the is, the rel   in combin   Bit 5   Bit 6   Bit 7   Bit 8	digital ou must be   bus cont   g /Digita   g /Digita   output 7   output 8	independently the function   it 4
		Bit 8	Bits 7-4	Bits 3-0	
	Min. value	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0000 \\ 0 \end{gathered}$	$\begin{gathered} 0000 \\ 0 \end{gathered}$	Binary hex
	Max. value	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1111 \\ F \end{gathered}$	$\begin{gathered} 1111 \\ F \end{gathered}$	Binary hex

Setting of the value via ...
BUS: $\quad$ The corresponding hex value is written into the parameter, thereby setting the relay or digital outputs.
SimpleBox: The hexadecimal code is entered directly if the SimpleBox is used.
ParameterBox: Each individual output can be separately called up in plain text and activated.

Parameter   \{Factory setting	Setting value / Description / Note	Device	Supervisor	Parameter   set
P542$[-01]$   $[-02]$	Set analog output			
$0.0 \ldots 10.0 \mathrm{~V}$	$[-01]=$	First IOE, AOUT of the first I/O extension (SK xU4-IOE)		
$\left\{\begin{array}{lll}\text { all } 0.0\}\end{array}\right.$	[-02] $=$$\quad$ Second IOE, AOUT of the second I/O extension (SK xU4-IOE)			


P543	$\begin{array}{r} {[-01]} \\ \ldots \\ {[-03]} \end{array}$	Actual bus value 1... 3		S	P
0... 22		In this parameter the returned value on bus actuation can be selected.			
$\begin{aligned} & \{[-01]=1\} \\ & \{[-02]=4\} \end{aligned}$		NOTE: For further details, please refer to the relevant bus manual or the description for (P418). (Values from 0\% ... 100\% correspond to $0000_{\text {hex }}$... $4000_{\text {hex }}$ )			
$\{[-03]=9\}$		[-01] = Actual bus value 1			
		[-02] = Actual bus value 2 (only for PPO type 2 or 4)			
		[-03] = Actual bus value 3 (only for PPO type 2 or 4)			

## Possible setting values:

$$
10=\ldots 11 \text { reserved }
$$

[^10]| Bi | Bit $1=$ Digln 2 (FI) | Bit $2=$ Digln 3 (FI) | Bit $3=$ Digln 4 (FI) |
| :---: | :---: | :---: | :---: |
| Bit $4=$ PTC input (FI) | Bit $5=$ Digln 5 (D11, 1. SK....IOE) | Bit $6=$ Digln 6 (DI2, 1. Sk....IOE) | Bit $7=\operatorname{Digln} 7$ (DI3, 1. SK....IOE) |
| Bit $8=$ Digln 8 (DI4, 1. SK....IOE) | Bit $9=$ reserved | Bit 10 = reserved | Bit 11 = reserved |
| Bit $12=$ DigOut 1 (FI) | Bit $13=$ mech. brake (FI) | Bit 14 = DigOut 2(DO1, 1. Sk...IOE) | Bit $15=$ DigOut 3 (DO2, 1. Sk....10E) |

$$
\begin{aligned}
& 0=\text { Off } \\
& 1=\text { Actual frequency } \\
& \text { ( } x=4000_{\text {nex }}{ }^{*}[[\mathrm{~Hz}](\mathrm{P} 105) \text { ) } \\
& 2 \text { = Actual speed } \\
& \text { ( } x=4000_{\text {hex }} \mathrm{x}^{\mathrm{n}} \text { (rpm]/(P202)) } \\
& 3 \text { = Current } \\
& \text { ( } \left.x=4000_{\text {hex }}{ }^{*}[A] /(P 203)\right) \\
& 4 \text { = Torque current (100\% = P112) } \\
& \left.\left(x=4000_{\text {hex }}{ }^{*} \mid[A] /(\text { P112 })^{*} 100 / \sqrt{((P 203)}\right)^{2}+(\text { P209 })^{2}\right) \\
& 5=\text { Digital IO status }{ }^{4} \\
& 6=\text {... } 7 \text { reserved } \\
& 8 \text { = Setpoint frequency } \\
& \text { (x=4000 } \text { hex }^{* x s[H z] /(P 105)) ~} \\
& 9 \text { = Error code }
\end{aligned}
$$

Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P546	Function Bus setpoint 1 ... 3		S	P
$\begin{aligned} & 0 \ldots 24 \\ & \{[-01]=1\} \\ & \{[-02]=0\} \\ & \{[-03]=0\} \end{aligned}$	In this parameter, a function is assigned to   NOTE: For further details, please ref (P400). (Values from 0\% For standardisation of the setp   [-01] = Bus setpoint value 1   [-02] = Bus setpoint value 2 (only for PPO   [-03] = Bus setpoint value $\mathbf{3}$ (only for PPO   Possible setting values:   $0=$ Off   1 = Setpoint frequency (16 Bit)   2 = Frequency addition   3 = Frequency subtraction   4 = Minimum frequency   $5=$ Maximum frequency   6 = Current value, process controller   7 = Nominal value, process controller   8 = PI current frequency   9 = PI limited current frequency   $10=$ PI supervised current frequency   $11=$ Torque current limitation (limited)   $12=$ Torque current limitation (switch-off)	output set   o the relev 100\% values:   e 2 or 4)   e 2 or 4)   $13=$ Cur   14 = Cur   $15=$ Ram   $16=$ Pre   $17=$ Mult   $18=$ Cur   $19=$ Ser   $20=$ Bus   21 = .. 24   $31=$ Dig   $32=$ Ana	ring bus actu manual or ond to 000 (Section 9.10)   it (limited)   it (switch-off)   torque ((P2   n   rol (Curve tra   e torque   0-7   ed for Posico   ut first IOE (   put first IOE	n.   description for ... $4000_{\text {hex, }}$ )   multiplication)   calculator)   status DOUT)   value AOUT)
P549	PotentiometerBox function		S	
$\begin{aligned} & 0 \ldots 3 \\ & \{1\} \end{aligned}$	This parameter provides the possibility of bus) to the current setpoint value by means   The adjustment range is determined by the   $0=0 f f$   1 = Setpoint frequency, with(P509) $=1$ control via USS is possible	ding a co the Simpl xiliary set   $2=$   3 =	value (fixed rameterBox   ue P410/411   ncy addition   ncy subtrac	ency, analog, oard.


Parameter   \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P552 $[-01]$   $[-02]$	CAN Master cycle time(system bus)		S	
```0.0 / 0.1 ... 100.0 ms { all 0.0 }```	In this parameter, the cycle time for the system bus master mode and the CAN open encoder is set (see P503/514/515):   [01] = CAN Master function, cycle time for system bus master functions   [02] = CANopen absolute encoder, cycle time for system bus absolute encoder			

With the setting $\mathbf{0}=$ "Auto" the default value (see table) is used.
According to the Baud rate set, there are different minimum values for the actual cycle time:

The correct percentage value is calculated as follows: $k[\%]=\frac{R * P_{\max B R}}{U_{\max }^{2}}$
$\mathrm{R}=$ Brake resistor resistance
$P_{\text {maxBR }}=$ short-term peak power of the brake resistor
$\mathrm{U}_{\max }=$ chopper switching wave from the FI

$$
\begin{array}{ll}
1 \sim 115 / 230 \mathrm{~V} & \Rightarrow 440 \mathrm{~V}= \\
3 \sim 230 \mathrm{~V} \sim & \Rightarrow 500 \mathrm{~V}= \\
3 \sim 400 \mathrm{~V} \sim & \Rightarrow 1000 \mathrm{~V}=
\end{array}
$$

NOTE: With the use of the internal brake resistor SK BRI4-... a suitable limit must be set. However, the activation of the limit via the DIP switch (Section 5.1.1), DIP8 = "On" is recommended.

Parameter \{Factory setting $\}$	Setting value / Description / Note	Device	Supervisor	Parameter set
P558	Flux delay (Excitation time)		S	P

$0 / 1 / 2 \ldots 500 \mathrm{~ms} \quad$ The ISD control can only function correctly if there is a magnetic field in the motor. For this \{1 \} reason, a DC current is applied before starting the motor. The duration depends on the size of the motor and is automatically set in the factory setting of the FI.

For time critical applications, the excitation time can be set or deactivated.
$0=\quad$ switched off
$1=\quad$ automatic calculation
$\mathbf{2} . .5 \mathbf{5 0 0}=$ according to set time in [ms]
NOTE: Setting values that are too low can reduce the dynamics and starting torque.

P559 DC run-on time		S	P

$0.00 \ldots 30.00 \mathrm{~s} \quad$ Following a stop signal and the braking ramp, a direct current is briefly applied to the motor to $\{0.50\} \quad$ fully bring the drive to a stop. Depending on the inertia, the time for which the current is applied can be set in this parameter.
The current level depends on the previous braking procedure (current vector control) or the static boost (linear characteristic).

P560 Mode of parameter save		S	
0			

$0 \ldots 2 \quad \mathbf{0}=$ Only in RAM, changes to the parameter settings are no longer saved on the EEPROM. All previously saved settings are retained, even if the Fl is disconnected from the mains.
$1=$ RAM and EEPROM, all parameter changes are automatically written to the EEPROM and remain stored there even if the FI is disconnected from the mains supply.
$\mathbf{2 =} \mathbf{O f f}$, no storage in the RAM and EEPROM possible (No parameter changes are accepted)
NOTE: If BUS communication is used to implement parameter changes, it must be ensured that the maximum number of write cycles $(100,000 x)$ in the EEPROM is not exceeded.

6.1.7 Positioning

Parameter group P600 is used to adjust the positioning control of the SK 200E. In order to make this parameter visible, the supervisor parameter P003 $=3$ must be set.

A detailed description of these parameters can be found in Manual BU 0210.(www.nord.com)

6.1.8 Information (Frequency inverter)

Parameter		Setting value / Description / Note	Device	Supervisor	Parameter set
P700	$[-01]$ \ldots	Actual operating status			
0.0 [...21.4	Display of current messages for the actual operating status of the frequency inverter such as errors, wanings or the cause of a switch-on block. For details of messages see Section 7				

[-01] = Current fault, shows the currently active (unacknowledged) error (Section 7.2.1)
[-02] = Actual warning, shows any current warning message (Section 7.3)
[-03] = Reason Fl blocked, shows the reason for a currently active switch-on block (Section 7.4)

Note

SimpleBox:Only warning messages and errors can be displayed with the Simplebox. Display of the messages is encoded. The description of the codes (warning/error numbers) can be found in the relevant table in Section 7.2.1, 7.3.

ParameterBox: the ParameterBox displays the messages in plain text. The reason for any switch-on block can also be displayed.
Bus: The display of error messages at bus level is in decimal integer format. If the value is divided by 10, the display corresponds to the description in Section 7.2.
Example: Display: $20 \rightarrow$ Error number: 2.0

P701 $[-01]$ \ldots $[-05]$	Last fault 1... 5
0.0 ... 21.4	This parameter stores the last 5 faults. (Details Section 7)
	With the SimpleBox, the corresponding memory location 1...5- (Array parameter) must be selected and confirmed using the OK key to read the stored error code.
$\begin{aligned} & \text { P702 } \end{aligned} \begin{array}{r} {[-01]} \\ \ldots \\ {[-05]} \end{array}$	Frequency, last error 1...5 S
-400.0 ... 400.0 Hz	This parameter stores the output frequency that was being delivered at the time the fault occurred. The values of the last 5 errors are stored. With the SimpleBox, the corresponding memory location 1...5- (Array parameter) must be selected and confirmed using the OK key to read the stored error code.
P703$[-01]$ \ldots $[-05]$	Current, last error 1...5 S
0.0... 999.9 A	This parameter stores the output current that was being delivered at the time the fault occurred. The values of the last 5 errors are stored. With the SimpleBox, the corresponding memory location 1...5- (Array parameter) must be selected and confirmed using the OK key to read the stored error code.
P704 $[-01]$ \ldots $[-05]$	Voltage, last error 1...5 S
0 ... 600 V AC	This parameter stores the output voltage that was being delivered at the time the fault occurred. The values of the last 5 errors are stored. With the SimpleBox, the corresponding memory location 1...5- (Array parameter) must be selected and confirmed using the OK key to read the stored error code.

Parameter	Setting value / Description / Note		Device	Supervisor	Parameter set
P705 $[-01]$ \ldots $[-05]$	DC link voltage last error 1... 5			S	
0 ... 1000 V DC	This parameter stores the link voltage that was being delivered at the time the error occurred. The values of the last 5 errors are stored. With the SimpleBox, the corresponding memory location 1...5- (Array parameter) must be selected and confirmed using the OK key to read the stored error code.				
P706$[-01]$ $[-05]$	Parameter set, last error 1... 5			S	
$0 \ldots 3$	This parameter stores the parameter set code that was active when the error occurred. Data for the previous 5 faults are stored. With the SimpleBox, the corresponding memory location 1...5- (Array parameter) must be selected and confirmed using the OK key to read the stored error code.				
$\begin{gathered} \text { P707 } \end{gathered} \begin{array}{r} {[-01]} \\ \ldots \\ \\ \\ {[-03]} \end{array}$	Software version/ revision				
0.0 ... 9999.9	This parameter shows the software and revision numbers in the FI. This can be significant when different FIs are assigned the same settings. Array [-03] provides information about any special versions of the hardware or software A zero stands for the standard version.				
P708	State of digital inputs				
$\begin{aligned} & 00000 \ldots 11111 \text { (bin) } \\ & \text { or } \\ & 00 \ldots 1 \mathrm{~F} \text { (hex) } \end{aligned}$	Displays the status of th check the input signals. Bit $0=\quad$ Digital input Bit $1=\quad$ Digital inpu Bit $2=\quad$ Digital inpu	Digital input 1 Digital input 2 Digital input 3	Bit $3=$ Bit $4=$	Digital input 4 PTC resistor input	
		Bit 4	Bits 3-0		
	Minimum value	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0000 \\ 0 \end{gathered}$		Binary hex
	Maximum value	1	$\begin{gathered} 1111 \\ F \end{gathered}$		Binary hex

SimpleBox: The binary Bits are converted into a hexadecimal value and displayed.
ParameterBox: The Bits are displayed with increasing values from right to left (binary).

Parameter	Setting value / Description / Note	Device	Supervisor	Parameter set
P719	Actual current			
0.0... 999.9 A	Displays the actual output current.			
P720	Actual torque current			
-999.9 ... 999.9 A	Displays the actual calculated torque-developing output current (active current). Basis for calculation is the motor data P201...P209 \rightarrow negative values $=$ generator, \rightarrow positive values $=$ drive			
P721	Actual field current			
-999.9 ... 999.9 A	Displays the actual calculated field current (reactive current). Basis for calculation is the motor data P201...P209			
P722	Current voltage			
$0 . . .500 \mathrm{~V}$	Displays the actual AC voltage supplied by the FI output.			
P723	Actual voltage component Ud			
0 ... 500 V	Displays the actual field voltage component.			
P724	Actual voltage component Uq			
$0 \ldots 500 \mathrm{~V}$	Displays the actual torque voltage component.			
P725	Current cos phi			
0.00 ... 1.00	Displays the actual calculated $\cos \varphi$ of the drive.			
P726	Apparent power			
0.00 ... 99.99 kVA	Displays the actual calculated apparent power. Basis for calculation is the motor data P201...P209			
P727	Mechanical power			
-99.99 ... 99.99 kW	Displays the actual calculated effective power of the motor. Basis for calculation is the motor data P201...P209			
P728	Input voltage			
$0 . . .1000$ V	Displays the actual mains voltage at the FI input.			
P729	Torque			
-400 ... 400%	Displays the actual calculated torque. Basis for calculation is the motor data P201...P209			

Parameter	Setting value / Description / Note	Device	Supervisor	Parameter set
P730	Field			
$0 \ldots 250 \%$	Displays the actual field in the motor as calculated by the inverter. Basis for calculation is the motor data P201...P209			

P731	Parameter set		
$0 \ldots 3$	Shows the actual operating parameter set.		
	0 = Parameter set 1	2 = Parameter set 3	
	1 = Parameter set 2	3 = Parameter set 4	
P732	Phase U current	S	S
0.0... 999.9 A	Displays the actual U phase current.		
	This value can deviate from the value in P719, due to the measurement procedure used, even with symmetrical output currents.		
P733	Phase V current	S	S
0.0 ... 999.9 A	Displays the actual V phase current.		
	This value can deviate from the value in P719, due to the measurement procedure used, even with symmetrical output currents.		

P734	Phase W current		S	
$0.0 \ldots 999.9 \mathrm{~A}$	Displays the actual W phase current. NOTE: \quadThis value can deviate from the value in P719, due to the measurement procedure used, even with symmetrical output currents.			

P735	Speed encoder		S	
$-9999 \ldots 9999 \mathrm{rpm}$	Displays the actual rotation speed supplied by the incremental encoder. For this, P301 must be correctly set.			

[-01] = related to I_{N} (P203) of the motor
[-02] = related to I^{2} t control (P535)

Parameter	Setting value / Description / Note	Device	Supervisor	Parameter set
P739$[-01]$ \ldots $[-03]$	Heat sink temperature			
-40 ... 150	[-01] = Fl heat sink temperature [-02] = Ambient temperature (Internal temperature of the FI) [-03] = Temperature Motor KTY, motor temperature via KTY, recording only via 10 extension, setting in parameter (P400) to function $\{30\}$ "Motor temperature"			
$\begin{array}{lr} \text { P740 } & {[-01]} \\ & \ldots \\ & {[-13]} \\ \hline \end{array}$	Process data Bus In		S	
0000 ... FFFF (hex)	For values to be displayed, a bus system must be selected in P509. For standardisation of actual values: See also (Section 9.10).			
	[-01] = Control word (P509)	Control word, source from (P509).		
	$\begin{aligned} & {[-02]=\text { Setpoint } 1(\text { P510-01) / (P546 [-01] })} \\ & {[-03]=\text { Setpoint } 2(\text { P510-01) / (P546 [-02]) }} \\ & {[-04]=\text { Setpoint } 3(\text { P510-01) / (P546 [-03] })} \end{aligned}$	Setpoint data from main setpoint (P510 [-01]).		
	[-05] = resulting statusof In Bit P480	The displayed value depicts all Bus In Bit sources linked with OR.		
	$\begin{aligned} & \text { [-06] }=\text { Parameter data } \operatorname{In} 1 \\ & \text { [-07] }=\text { Parameter data } \ln 2 \\ & \text { [-08] }=\text { Parameter data } \ln 3 \\ & \text { [-09] }=\text { Parameter data } \operatorname{In} 4 \\ & \text { [-10] }=\text { Parameter data } \ln 5 \end{aligned}$	Data during parameter transfer: Order label (AK), Parameter number (PNU), Index (IND), Parameter value (PWE 1/2)		
	$\begin{aligned} & {[-11]=\text { Setpoint } 1(\text { P510-02) }} \\ & {[-12]=\text { Setpoint } 2(\text { P510-02 })} \\ & {[-13]=\text { Setpoint } 3(\text { P510-03 })} \end{aligned}$	Setpoint data from the master function value (broadcast), if P509/510 = 4 (P502/P503)		

Parameter	Setting value / Description / Note			Device	Supervisor	Parameter set
P748	Status CANopen (system bus status)					
$\begin{aligned} & 0000 \ldots \text { FFFF (hex) } \\ & \text { or } \\ & 0 \ldots 65535 \text { (dec) } \end{aligned}$	Displays the system bus status.					
	Bit 0 : Bit 1: Bit 2: Bit 3: Bit 4: Bit 5: Bit 6: Bit 7: Bit 8: Bit 9: Bit 10:	24 V Bus supply voltag CANbus in "Bus Warn CANbus in "Bus Off" System bus \rightarrow Bus m System bus \rightarrow Additio System bus \rightarrow Additio The protocol of the C vacant "Bootsup Message" s CANopen NMT State CANopen NMT State	g" statu tus dule onl al modu al modu modul	(field bus 1 online 2 online is	e.g.: SK x dule, e.g.: S dule, e.g.: $\text { / } 1 \text { = CANop }$	R) -IOE) -IOE)
		CANopen NMT State Stopped Pre-Operational Operational	Bit 10 0 0 1	Bit 9 0 1 0		

Parameter		Setting value / Description / Note	Device	Supervisor	Parameter set
P750		Overcurrent statistic		S	
0... 9999		Number of overcurrent messages during the operating period P714.			
P751		Overvoltage statistic		S	
0... 9999		Number of overvoltage messages during the operating period P714.			
P752		Mains fault statistic		S	
0... 9999		Number of mains faults during the operating period P714.			
P753		Overtemperature statistic		S	
0... 9999		Number of overtemperature faults during the operating period P714.			
P754		Parameter loss statistic		S	
0 ... 9999		Number of parameters lost during the operating period P714.			
P755		System error statistic		S	
0... 9999		Number of system faults during the operating period P714.			
P756		Timeout statistic		S	
0 ... 9999		Number of Time out errors during the operating period P714.			
P757		Customer error statistic		S	
0 ... 9999		Number of Customer Watchdog faults during the operating period P714.			
P760		Actual mains current		S	
0.0... 50		Displays the actual input current.			
P799	$\begin{array}{r} {[-01]} \\ \ldots \\ {[-05]} \end{array}$	Operating hours last error (or duration of error)			
$0.00 \ldots \ldots h$		This parameter shows the operating hours counter status (P714) at the moment of the previous fault. Array [-01] ... [-05] corresponds to the last fault 1 ... 5.			

6.2 Parameterisation of I/O - extension SK xU4-IOE-...

In order to access the parameters of the I/O extension, the parameterisation tool (ParameterBox, SimpleBox, NordCon) must be connected directly to the device.
If the I/O extension is on an active system bus, access can be obtained by using ParameterBox SK PAR-3H or the NordCon software as well as via a different device (e.g. frequency inverter SK 200E). After the bus scan, it is only necessary to select the I/O extension (menu item SK PAR-3H: "Object selection").

6.2.1 Basic parameters (I/O - extension)

Parameter \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
P150	Set relays	SK TU4-IOE		
$\begin{aligned} & 0 \ldots 4 \\ & \{0\} \end{aligned}$	The switching statuses of the digital $0=$ Via bus: all digital outputs the frequency inverter (P 1 = Outputs Off: all digital out 2 = Output 1 on (DO1): dig remains switched off 3 = Output 2 on (DO1): dig remains switched off 4 = Outputs 1 and 2 on: all di	SK TU4 IOE) ca the system bus $=0 \mathrm{~V}$) s set to "High s set to "High set to "High" (ac	be changed , the function (active), dig (active), dig ive)	are defined in output DO2 output DO1

| P152 Factory setting | | | |
| :--- | :--- | :--- | :--- | :--- |

$0 \ldots 2$ By selecting the appropriate value and confirming it with the OK key, the selected parameter $\{0\} \quad$ range is entered in the factory setting. Once the setting has been made, the value of the parameter automatically returns to 0 .

0 = No change:Does not change the parameterisation.
1 = Load factory setting: The complete parameterisation of the FI reverts to the factory setting. All originally parameterised data is lost.

2 = Calibration AOUT: The accuracy of the analog output can be improved with a correction line, however, this is not activated as standard. If factory settings (P152=\{1\}) are loaded, the correction values are retained. A calibration is carried out if (P152) is set to \{ 2 \}, i.e. the line is re-recorded and stored in the EEPROM.

Parameter \{Factory setting\}	Setting value / Description / Note	Device	Supervisor	Parameter set
$\begin{array}{lr} \text { P161 } & {[-01]} \\ & {[-09]} \end{array}$	Filter time			
$\begin{aligned} & 0 \ldots 400.00 \mathrm{~ms} \\ & \{[-01]=100\} \\ & \{[-02]=100\} \\ & \{[-03]=0\} \end{aligned}$	The analog and digital inputs are read cyclically every $250 \mu \mathrm{~s}$, this results in an input uncertainty of 0.25 ms . In order to eliminate bounce and smooth the input signals, the information which is read in is passed through a filter routine. The filter time can be parameterised			
$\begin{aligned} & \{[-04]=2\} \\ & \{[-05]=2\} \end{aligned}$	The parameterisation of the filter time for the analog outputs is used to round off signal jumps.			
$\{[-06]=2\}$	[-01] = AIN1	[-06] = DIN3 (only SK TU4-IOE)		
$\{[-07]=2\}$	[-02] = AIN2	[-07] = DIN4 (only SK TU4-IOE)		
$\{[-08]=0\}$	[-03] = AOUT	[-08] = DOUT1 (only SK TU4-IOE)		
$\{[-09]=0\}$	[-04] = DIN1	[-09] = DOUT2 (only SK TU4-IOE)		
	[-05] = DIN2			

P162	Send broadcast		
$0 \ldots 1$	Activation of this parameter (setting On \rightarrow 1) switches the I/O extension module into broadcast mode and thus enables simultaneous access by up to four frequency inverters. Each frequency inverter evaluates the information from the I/O extension individually.		
$\{0\}$	The addressing of the module (DIP switches) is no longer taken into account.		

$$
0=\text { Off }
$$

$$
1 \text { = On }
$$

NOTE: The data received by the I/O module is subject to an OR logic. If several frequency inverters are linked to the digital outputs of the module, the relevant output is set to "High" as soon as an inverter accesses it. The analog outputs behave in a similar manner. Here, the highest value has priority.

P163	AOut Inverse (Inversion of Analog OUT)		
$0 \ldots 1$	The function of the analog output can be inverted		
$\{0\}$	$0=$ No inversion		
	$1=$ Analog output signal is inverted		

6.2.2 Information (I/O - extension)

Parameter	Setting value / Description / Note	Device	Supervisor	Parameter set	
P170	$\ldots .[-01]$				
	Actual error	[-02]			

0 ... $9999 \quad$ Actual fault present. Further details in Section 7 "Operating status messages".
... [-01] = Actual module fault
... [-02] = Last module fault

Possible displayed values:
1000 = EEPROM error
1030 = Systembus Bus Off
2000 = DIP changed
2001 = DIP configuration error / not permissible
2010 = Analog output error

$\begin{array}{lr} \text { P171 } & \ldots\left[\begin{array}{c} {[-01]} \\ \\ \\ \\ \\ \ldots \end{array}\right] \\ \hline[-03] \end{array}$	Software version/ revision		
0.0 ... 9999.9	This parameter shows the software and revision numbers in the module. Array [-03] provides information about any special versions of the hardware or software A zero stands for the standard version. ... [-01] = Software version 1 Version number: (e.g.: V1.0) ... [-02] = Software version 2 Version number: (e.g.: R1) ... [-03] = Software version 3 Version number: (e.g.: 0)		

P172	Configuration		
$0 \ldots 2$	This parameter displays the functions or variants integrated into the module.		

[^11]

6.3 Parameter overview, User settings

$(P) \quad \Rightarrow$ Depends on parameter set. These parameters can be set in various ways in the four parameter sets.
$[-x x] \Rightarrow$ Array parameter. A parameter can be set in various sub-groups.
$S \quad \Rightarrow$ Supervisor parameter, visibility depends on P003.

6.3.1 Overview of frequency inverter parameters

Parameter No. [Array]	Name	Factory setting	Super visor	Setting after commissioning			
				P 1	P 2	P 3	P 4
MOTOR DATA / CHARACTERISTIC CURVE PARAMETERS (Section 6.1.3)							
P200 (P)	Motor list	0					
P201 (P)	Nominal frequency [Hz]	50.0 *	S				
P202 (P)	Nominal speed [rpm]	1385 *	S				
P203 (P)	Nominal current [A]	4.8 *	S				
P204 (P)	Nominal voltage [V]	230 *	S				
P205 (P)	Nominal power [kW]	1.10 *					
P206 (P)	cos phi	0.78 *	S				
P207 (P)	Star Delta con. [star=0/delta=1]	1 *	S				
P208 (P)	Stator resistance [Ω]	6.28*	S				
P209 (P)	No-load current [A]	3.0 *	S				
P210 (P)	Static boost [\%]	100	S				
P211 (P)	Dynamic boost [\%]	100	S				
P212 (P)	Slip compensation [\%]	100	S				
P213 (P)	ISD control loop gain [\%]	100	S				
P214 (P)	Torque precontrol [\%]	0	S				
P215 (P)	Boost precontrol [\%]	0	S				
P216 (P)	Time boost precontrol [s]	0.0	S				
P217 (P)	Oscillation damping [\%]	10	S				
P218	Modulation depth [\%]	100	S				
P219	Auto. magn. adjustment [\%]	100	S				
P220 (P)	Parameter identification	0					

*) dependent on FI power or P200/P220

CONTROL PARAMETERS (Section 6.1.4)

| P300 | (P) | Servo Mode [On / Off] | 0
 (Off) | S | | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P301 | | Incremental encoder | 6 | S | | | | |
| P310 | (P) | Speed controller P [\%] | 100 | S | | | | |
| P311 | (P) | Speed controller I [\%/ms] | 20 | S | | | | |
| P312 | (P) | Torque current controller P [\%] | 200 | S | | | | |
| P313 | (P) | Torque current controller I
 [\%/ms] | 125 | S | | | | |
| P314 | (P) | Torque current controller limit
 [V] | 400 | S | | | | |
| P315 | (P) | Field current controller P [\%] | 200 | S | | | | |
| P316 | (P) | Field current controller I [\%/ms] | 125 | S | | | | |
| P317 | (P) | Field current controller limit [V] | 400 | S | | | | |
| P318 | (P) | Field weakening controller P
 [\%] | 150 | S | | | | |

Parameter No. [Array]	Name	Factory setting	Super visor	Setting after commissioning			
				P 1	P 2	P 3	P 4
P319 (P)	Field weakening controller I [\%/ms]	20	S				
P320 (P)	Field weakening border [\%]	100	S				
P321 (P)	Speed control I brake off	0	S				
P325	Function encoder	0	S				
P326	Encoder ratio	1.00	S				
P327 (P)	Speed slip error [rpm]	$\begin{gathered} 0 \\ \text { (Off) } \end{gathered}$	S				
P328 (P)	Speed slip delay [s]	0.0	S				
CONTROL TERMINALS (Section 6.1.5)							
P400 [-01] (P)	Function, setpoint inputs Potentiometer 1	1					
P400 [-02] (P)	Function, setpoint inputs Potentiometer 2	15					
P400 [-03] (P)	Function, setpoint inputs Ext. analog input 1	0					
P400 [-04] (P)	Function, setpoint inputs Ext. analog input 2	0					
P400 [-05] (P)	Setpoint input function Setpoint module	1					
P400 [-06] (P)	Function, setpoint inputs Digital inpput 2	0					
P400 [-07] (P)	Function, setpoint inputs Digital inpput 3	1					
P400 [-08] (P)	Function, setpoint inputs Ext. analog input1 2nd IOE	0					
P400 [-09] (P)	Function, setpoint inputs Ext. analog input 2 2nd IOE	0					
P401 [-01]	Analog input mode Ext. analog input 1	0					
P401 [-02]	Analog input mode Ext. analog input 2	0					
P401 [-03]	Function, analog input Ext. analog input1 2nd IOE	0					
P401 [-04]	Function, analog input Ext. analog input 2 2nd IOE	0					
P401 [-05]	Analog input mode reserved	0					
P401 [-05]	Analog input mode reserved	0					
P402 [-01]	Adjustment: 0\% [V] Ext. analog input 1	0.0	S				
P402 [-02]	Adjustment: 0\% [V] Ext. analog input 2	0.0	S				
P402 [-03]	Adjustment: 0\% [V] Ext. analog input 1 2nd IOE	0.0	S				

Parameter No. [Array]	Name	Factory setting	Super visor	Setting after commissioning			
				P 1	P 2	P 3	P 4
P402 [-04]	Adjustment: 0\% [V] Ext. analog input 2 2nd IOE	0.0	S				
P402 [-05]	Adjustment: 0\% [V] reserved	0.0	S				
P402 [-06]	Adjustment: 0\% [V] reserved	0.0	S				
P403 [-01]	Adjustment: 100\% [V] Ext. analog input 1	10.0	S				
P403 [-02]	Adjustment: 100\% [V] Ext. analog input 2	10.0	S				
P403 [-03]	Adjustment: 100\% [V] Ext. analog input 1 2nd IOE	10.0	S				
P403 [-04]	Adjustment: 100\% [V] Ext. analog input 2 2nd IOE	10.0	S				
P403 [-05]	Adjustment: 100\% [V] reserved	0.0	S				
P403 [-06]	Adjustment: 100\% [V] reserved	0.0	S				
P404 [-01]	reserved						
P404 [-02]	reserved						
P410 (P)	Min. freq. a-in 1/2 [Hz]	0.0					
P411 (P)	Max. freq. a-in 1/2[Hz]	50.0					
P412 (P)	Setpoint, process ctrl. [V]	5.0	S				
P413 (P)	P-component PI control [\%]	10.0	S				
P414 (P)	I-component PI control [\%/s]	10.0	S				
P415 (P)	Process controller limit [\%]	10.0	S				
P416 (P)	Ramp time PI setpoint. [s]	2.00	S				
P417 [-01] (P)	Analog output offset [V] first IOE	0.0	S				
P417 [-02] (P)	Analog output offset [V] second IOE	0.0	S				
P418 [-01] (P)	Analog output function first IOE	0	S				
P418 [-02] (P)	Analog output function second IOE	0	S				
P419 [-01] (P)	Analog output scaling [\%] first IOE	100	S				
P419 [-02] (P)	Analog output scaling [\%] second IOE	100	S				
P420 [-01]	Digital inputs (DIN 1)	1					
P420 [-02]	Digital inputs (DIN2)	2					
P420 [-03]	Digital inputs (DIN3)	4					
P420 [-04]	Digital inputs (DIN4)	5					
P426 (P)	Quick stop time [s]	0.10	S				
P427	Quick stop on Error	0	S				

Parameter No. [Array]	Name	Factory setting	Super visor	Setting after commissioning			
				P 1	P 2	P 3	P 4
P428	Automatic starting	$\begin{gathered} 0 \\ \text { (Off) } \end{gathered}$	S				
P434	Digital output function	1					
P435	Digital output scaling [\%]	100					
P436	Digital output hysteresis [\%]	10	S				
P460	Watchdog time [s]	10.0	S				
P464	Fixed frequency mode	0	S				
P465 [-01]	Fixed frequency field [Hz]	5					
P465 [-02]	Fixed frequency field [Hz]	10					
P465 [-03]	Fixed frequency field [Hz]	20					
P465 [-04]	Fixed frequency field [Hz]	35					
P465 [-05]	Fixed frequency field [Hz]	50					
P465 [-06]	Fixed frequency field [Hz]	70					
P465 [-07]	Fixed frequency field [Hz]	100					
P465 [-08]	Fixed frequency field [Hz]	0					
P465 [-09]	Fixed frequency field [Hz]	-5					
P465 [-10]	Fixed frequency field [Hz]	-10					
P465 [-11]	Fixed frequency field [Hz]	-20					
P465 [-12]	Fixed frequency field [Hz]	-35					
P465 [-13]	Fixed frequency field [Hz]	-50					
P465 [-14]	Fixed frequency field [Hz]	-70					
P465 [-15]	Fixed frequency field [Hz]	-100					
P466 (P)	Min. freq .process controller	0.0	S				
P475 [-01]	On/Off switching delay [s] Digital input 1	0.000	S				
P475 [-02]	On/Off switching delay [s] Digital input 2	0.000	S				
P475 [-03]	On/Off switching delay [s] Digital input 3	0.000	S				
P475 [-04]	On/Off switching delay [s] Digital input 4	0.000	S				
P480 [-01]	Function, Bus I/O In Bits Bus / AS-i Dig In1	1					
P480 [-02]	Function, Bus I/O In Bits Bus / AS-i Dig In2	2					
P480 [-03]	Function, Bus I/O In Bits Bus / AS-i Dig In3	5					
P480 [-04]	Function, Bus I/O In Bits Bus / AS-i Dig In4	12					
P480 [-05]	Function, Bus I/O In Bits Bus / IOE Dig In1	0					
P480 [-06]	Function, Bus I/O In Bits Bus / IOE Dig In2	0					
P480 [-07]	Function, Bus I/O In Bits Bus / IOE Dig In3	0					

Parameter No. [Array]		Name	Factory setting	Super visor	Setting after commissioning				
		P 1			P 2	P 3	P 4		
P480	[-08]		Function, Bus I/O In Bits Bus / IOE Dig In4	0					
P480	[-09]	Function, Bus I/O In Bits Flag 1	0						
P480	[-10]	Function, Bus I/O In Bits Flag 2	0						
P480	[-11]	Function, Bus I/O In Bits Bit 8 Bus control word	0						
P480	[-12]	Function, Bus I/O In Bits Bit 9 Bus control word	0						
P481	[-01]	Function, Bus I/O Out Bits Bus / AS-i Dig Out1	18						
P481	[-02]	Function, Bus I/O Out Bits Bus / AS-i Dig Out2	8						
P481	[-03]	Function, Bus I/O Out Bits Bus / AS-i Dig Out3	30						
P481	[-04]	Function, Bus I/O Out Bits Bus / AS-i Dig Out4	31						
P481	[-05]	Function, Bus I/O In Bits Bus / IOE Dig Out1	0						
P481	[-06]	Function, Bus I/O In Bits Bus / IOE Dig Out2	0						
P481	[-07]	Function, Bus I/O In Bits Bus / 2nd IOE Dig Out1	0						
P481	[-08]	Function, Bus I/O In Bits Bus / 2nd IOE Dig Out2	0						
P481	[-09]	Function, Bus I/O In Bits Bit10 Bus status word	0						
P481	[-10]	Function, Bus I/O In Bits Bit13 Bus status word	0						
P482	[-01]	Norm. Bus IO Out Bits [\%] Bus / AS-i Dig Out1	100						
P482	[-02]	Norm. Bus IO Out Bits [\%] Bus / AS-i Dig Out2	100						
P482	[-03]	Norm. Bus IO Out Bits [\%] Bus / AS-i Dig Out3	100						
P482	[-04]	Norm. Bus IO Out Bits [\%] Bus / AS-i Dig Out4	100						
P482	[-05]	Norm. Bus IO Out Bits [\%] Bus / IOE Dig Out1	100						
P482	[-06]	Norm. Bus IO Out Bits [\%] Bus / IOE Dig Out2	100						
P482	[-07]	Norm. Bus IO Out Bits [\%] Bus / 2nd IOE Dig Out1	100						
P482	[-08]	Norm. Bus IO Out Bits [\%] Bus / 2nd IOE Dig Out2	100						
P482	[-09]	Norm. Bus IO Out Bits [\%] Bit10 Bus status word	100						
P482	[-10]	Norm. Bus IO Out Bits [\%] Bit13 Bus status word	100						

Parameter No. [Array]	Name	Factory setting	Super visor	Setting after commissioning			
				P 1	P 2	P 3	P 4
P483 [-01]	Hysteresis, Bus IO Out Bits [\%] Bus / AS-i Dig Out1	10	S				
P483 [-02]	Hysteresis, Bus IO Out Bits [\%] Bus / AS-i Dig Out2	10	S				
P483 [-03]	Hysteresis, Bus IO Out Bits [\%] Bus / AS-i Dig Out3	10	S				
P483 [-04]	Hysteresis, Bus IO Out Bits [\%] Bus / AS-i Dig Out4	10	S				
P483 [-05]	Hysteresis Bus IO Out Bits [\%] Bus / IOE Dig Out1	10	S				
P483 [-06]	Hysteresis Bus IO Out Bits [\%] Bus / IOE Dig Out2	10	S				
P483 [-07]	Hysteresis, Bus IO Out Bits [\%] Bus / 2nd IOE Dig Out1	10	S				
P483 [-08]	Hysteresis, Bus IO Out Bits [\%] Bus / 2nd IOE Dig Out2	10	S				
P483 [-09]	Hysteresis, Bus IO Out Bits [\%] Bit10 Bus status word	10	S				
P483 [-10]	Hysteresis, Bus IO Out Bits [\%] Bit13 Bus status word	10	S				
ADDITIONAL PARAMETERS (Section 6.1.6)							
P501	Inverter name	0					
P502 [-01] (P)	Value of master function 1	0	S				
P502 [-02] (P)	Value of master function 2	0	S				
P502 [-03] (P)	Value of master function 3	0	S				
P503	Leading function output	0	S				
P504	Pulse frequency [kHz]	6.0	S				
P505 (P)	Abs. minimum frequency [Hz]	2.0	S				
P506	Auto. Error acknowledgement	0	S				
P509	Source control word	0	S				
P510 [-01]	Source setpoints Main setpoint source	$\begin{gathered} 0 \\ \text { (auto) } \end{gathered}$	S				
P510 [-02]	Source setpoints Auxiliary setpoint source	$\begin{gathered} 0 \\ \text { (auto) } \end{gathered}$	S				
P511	USS baud rate	3	S				
P512	USS address	0					
P513	Telegram time-out [s]	0.0	S				
P514	CAN baud rate * [kBaud]	5	S				
P515 [-01]	CAN address slave address	32(dec)	S				
P515 [-02]	CAN address broadcast slave address	32(dec)	S				
P515 [-03]	CAN address * Master address	$32_{(\mathrm{dec})}$	S				
*) System bus							

Parameter	Name	Factory setting	Super visor	Setting after commissioning			
No. [Array]				P 1	P 2	P 3	P 4

POSITIONING (Section 6.1.7) NOTE: Further details are listed and described in Manual BU 0210. (www.nord.com)

P600	(P)	Position control	0 (off)	S				
P601	Actual position [rev]	---	S					
P602	Actual setpoint pos. [rev]	---	S					
P603	Current position diff. [rev]	---	S					
P604	Encoder type	0	S					
P605	$[-01]$	Absolute value encoder (multi)	10	S				

P605	$[-02]$	Absolute (single)	10	S
P607	$[-01]$	Ratio (increment)	1	S

P607	$[-02]$	Ratio (absolute)	1	S
P607	$[-03]$	Ratio (setpoint/actual)	1	S
P608	$[-01]$	Reduction ratio (increment)	1	S
P608	$[-02]$	Reduction ratio (absolute)	1	S

P608	$[-02]$	Reduction ratio (absolute)	1	S	
P608	[-03]	Reduction (setpoint/actual)	1	S	
P609	$[-01]$	Offset position (incr.) [rev]	0	S	
P609	$[-02]$	Offset position (abs.) [rev]	0	S	

P609	[-02]	Offset position (abs.) [rev]	0	S
P610	Setpoint mode	0	S	
P611	Position controller P [\%]	5	S	

P612		Pos. Window [rev]	0	S
P613	$[-01]$	Position 1 [rev]	0	S
P613	$[02]$	Position 2[rv]		

P613	$[-02]$	Position 2 [rev]	0	S	
P613	$[-03]$	Position 3 [rev]	0	S	

P613	$[-04]$	Position $4[\mathrm{rev}]$	0	S	
P613	$[-05]$	Position $5[\mathrm{rev}]$	0	S	

P613	$[-06]$	Position 6 [rev]	0	S
P613	$[-07]$	Position $7[\mathrm{rev}]$	0	S

P613	$[-08]$	Position $8[\mathrm{rev}]$	0	S
P613	$[-09]$	Position $9[\mathrm{rev}]$	0	S

P613	$[-10]$	Position $10[\mathrm{rev}]$	0	S	
P613	$[-11]$	Position $11[\mathrm{rev}]$	0	S	

P613	$[-11]$	Position $11[\mathrm{rev}]$	0	S	
P613	$[-12]$	Position $12[\mathrm{rev}]$	0	S	
P613	$[-13]$	Position $13[\mathrm{rev}]$	0	S	

P613	$[-13]$	Position 13 [rev]	0	S
P613	$[-14]$	Position 14 [rev]	0	S
P613	$[-15]$	Position 15 [rev]	0	S
P613	$[-16]$	Position 16 [rev]	0	S
P613	$[-17]$	Position 17 [rev]	0	S
P613	$[-18]$	Position 18 [rev]	0	S
P613	$[-19]$	Position 19 [rev]	0	S
P613	$[-20]$	Position 20 [rev]	0	S

Parameter No. [Array]		Name	Factory setting	Super visor	Setting after commissioning				
		P 1			P 2	P 3	P 4		
P613	[-21]		Position 21 [rev]	0	S				
P613	[-22]	Position 22 [rev]	0	S					
P613	[-23]	Position 23 [rev]	0	S					
P613	[-24]	Position 24 [rev]	0	S					
P613	[-25]	Position 25 [rev]	0	S					
P613	[-26]	Position 26 [rev]	0	S					
P613	[-27]	Position 27 [rev]	0	S					
P613	[-28]	Position 28 [rev]	0	S					
P613	[-29]	Position 29 [rev]	0	S					
P613	[-30]	Position 30 [rev]	0	S					
P613	[-31]	Position 31 [rev]	0	S					
P613	[-32]	Position 32 [rev]	0	S					
P613	[-33]	Position 33 [rev]	0	S					
P613	[-34]	Position 34 [rev]	0	S					
P613	[-35]	Position 35 [rev]	0	S					
P613	[-36]	Position 36 [rev]	0	S					
P613	[-37]	Position 37 [rev]	0	S					
P613	[-38]	Position 38 [rev]	0	S					
P613	[-39]	Position 39 [rev]	0	S					
P613	[-40]	Position 40 [rev]	0	S					
P613	[-41]	Position 41 [rev]	0	S					
P613	[-42]	Position 42 [rev]	0	S					
P613	[-43]	Position 43 [rev]	0	S					
P613	[-44]	Position 44 [rev]	0	S					
P613	[-45]	Position 45 [rev]	0	S					
P613	[-46]	Position 46 [rev]	0	S					
P613	[-47]	Position 47 [rev]	0	S					
P613	[-48]	Position 48 [rev]	0	S					
P613	[-49]	Position 49 [rev]	0	S					
P613	[-50]	Position 50 [rev]	0	S					
P613	[-51]	Position 51 [rev]	0	S					
P613	[-52]	Position 52 [rev]	0	S					
P613	[-53]	Position 53 [rev]	0	S					
P613	[-54]	Position 54 [rev]	0	S					
P613	[-55]	Position 55 [rev]	0	S					
P613	[-56]	Position 56 [rev]	0	S					
P613	[-57]	Position 57 [rev]	0	S					
P613	[-58]	Position 58 [rev]	0	S					
P613	[-59]	Position 59 [rev]	0	S					
P613	[-60]	Position 60 [rev]	0	S					

Parameter No. [Array]	Name	Factory setting	Super visor	Setting after commissioning			
				P 1	P 2	P 3	P 4
P613 [-61]	Position 61 [rev]	0	S				
P613 [-62]	Position 62 [rev]	0	S				
P613 [-63]	Position 63 [rev]	0	S				
P615	Maximum position [rev]	0	S				
P616	Minimum position [rev]	0	S				
P625	Hysteresis output [rev]	1	S				
P626	Relay position [rev]	0	S				
P630	Position slip error [rev]	0	S				
P631	Abs/Inc slip error [rev]	0	S				
P640	Unit of pos. value	0	S				

6.3.2 Parameter overview, I/O extension

Parameter No. [Array]	Name	Factory setting	Super visor	Setting after commissioning
BASIC PARAMETERS (Section 6.2.1)				
P150	Set relays	0		
P152	Factory setting	0		
P153 [-01]	Min. system bus cycle time (SDO)	10		
P153 [-02]	Min. system bus cycle time (PDO)	5		
P160	Set analog output	-0.1		
P161 [-01]	Filter time	100		
P161 [-02]	Filter time	100		
P161 [-03]	Filter time	0		
P161 [-04]	Filter time	2		
P161 [-05]	Filter time	2		
P161 [-06]	Filter time	2		
P161 [-07]	Filter time	2		
P161 [-08]	Filter time	0		
P161 [-09]	Filter time	0		
P162	Send broadcast	0		
P163	Inversion of Analog Out	0		
INFORMATION (Section 6.2.2)				
$\begin{array}{ll} \text { P170 } & \ldots \\ & {[-01]} \\ \hline \end{array}$	Actual error 1 (actual present fault)			
$\begin{array}{ll} \text { P170 } & \ldots \\ & {[-02]} \\ \hline \end{array}$	Actual error 2 (Last fault)			
P171 [-01]	Software version (Version number)			
P171 [-02]	Software version 2 (Revision number)			
P171 [-03]	Software version 3 (Special version)			
P172	Configuration			
P173	Option status			
P174	State of digital inputs			
P175	State of relays			
P176 [-01]	Current voltage (AIN1)			
P176 [-02]	Current voltage (AIN2)			
P176 [-03]	Current voltage (AOUT)			

7 Operating status messages

In case of deviation from the normal operating state, frequency inverters and Technology Units generate a message according to the cause. A differentiation is made between warnings and error messages. If the frequency inverter is in a "switch-on block" status, the cause of this can also be displayed.
Display of the Technology Unit messages is carried out via parameter (P170). The messages generated for the freqency inverter are displayed in the relevant array of the parameter (P700).

Frequency inverter switch-on block

If the frequency inverter is in the status "Not ready" or "Switch-on block", the cause is displayed in the third array element of parameter (P700) (as of software version V1.2 R0)
Display is only possible with the NordCon software or the ParameterBox (SK PAR-3H).

Warning messages

Warning messages are generated (as of software version V1.2 R0) as soon as a defined limit is reached, which does not however result in the frequency inverter being switched off. These messages can be displayed via array element [-02] in parameter (P700) until either the cause of the warning is no longer present or the frequency inverter has gone into fault status with an error message.

Error messages

Errors cause the frequency inverters to switch off, in order to prevent a device fault.
The following options are available to reset a fault (acknowledge):

1. Switching the mains off and on again,
2. By an appropriately programmed digital input (P420 = Function 12),
3. by switching of the "enable" on the frequency inverter to Low (if no digital input is programmed for acknowledgement),
4. by a Bus acknowledgement or
5. by P506, the automatic error acknowledgement.

An error message can only be acknowledged if its direct cause is no longer present.

Device LEDs: As supplied, various LEDs (green/red/yellow) are externally visible. These indicate the

 actual status of the device (Section 5.1.3.1 / 5.1.3.2)FI / DS LED: \quad This LED (Section 5.1.3.2) is dual-colour and can therefore indicate both a ready or an error status of the FI.

Green indicates the standby status and the presence of mains voltage. During operation an increasingly rapid flashing code indicates the degree of overload of the FI output.
Red indicates the presence of an error by flashing with a frequency which corresponds to the number code of the fault (Section 7.2).

7.1 SimpleBox display

The SimpleBox displays an error with its number and the prefix " E ". In addition the actual error can be displayed in array element [-01] of parameter (P700). The last error messages are stored in parameter P701. Further information on the FI status when errors occur can be found in parameters P702 to P706 / P799.
If the cause of the error is no longer present, the error display in the SimpleBox flashes and the error can be acknowledged with the OK key.
Warnings are indicated by the prefix "C" ("Cxxx") and cannot be acknowledged. They disappear automatically if the cause is no longer present or the frequency inverter has gone into "Fault" status. If a warning occurs during parameterisation, display of the message is suppressed.
The current warning message can be displayed in detail at any time in array element [-02] of parameter (P700).
The reason for an existing switch-on block cannot be displayed with the SimpleBox.

7.2 Table of possible error messages

7.2.1 Table of possible frequency inverter error messages

Display in the SimpleBox		Error Text in the Parameter Box	Cause Remedy
Group	Details in P700[-01] / P701		
E001	1.0	Inverter overtemperature (inverter heat sink)	Error signal from output stage module (static) Reduce ambient temperature $<50^{\circ} \mathrm{C}$ or $<40^{\circ} \mathrm{C}$ (see also Section 8 Technical data). Check control cabinet ventilation Increase ambient temperature, >-25
	1.1	Internal FI overtemperature (interior of inverter)	
E002	2.0	Motor overtemperature PTC (from thermistor)	Motor temperature sensor has triggered Reduce motor load Increase motor speed Use external motor fan
	2.1	Motor overtemperature $\mathbf{I}^{\mathbf{2}} \mathrm{t}$ Only if $\mathrm{I}^{2} \mathrm{t}$ - motor (P535) is programmed.	$1^{2} t$ motor has triggered Reduce motor load Increase motor speed
	2.2	Ext. brake resistor overtemperature Overtemperature via digital input (P420 [...])=\{13\}	Temperature monitor has triggered Digital input is Low

Display in the SimpleBox		Error Text in the Parameter Box	Cause Remedy
Group	Details in P700[-01] / P701		
E003	3.0	Overcurrent $\mathrm{I}^{2} \mathrm{t}$ limit	Rectifier $I^{2} t$ limit has triggered, e.g. $>1.5 \times \mathrm{I}_{\mathrm{n}}$ for 60 s (Please also note P504) Continuous overload at inverter output
	3.1	Overcurrent, chopper U^{2} t	U^{2} t limit for brake chopper has triggered (Attainment of 1.5 x the value for a period of 60 s) (Please also note P555, P556, P557) Avoid overcurrent in braking resistance
	3.2	Overcurrent IGBT monitoring 125\%	De-rating (power reduction) 125% overcurrent for 50 ms Brake chopper current too high for fan drives: enable flying start circuit (P520) See also Section 9.5
	3.3	Overcurrent IGBT fast monitoring 150\%	De-rating (power reduction) 150\% overcurrent Brake chopper current too high
E004	4.0	Overcurrent module	Error signal from module (short duration) Short-circuit or earthing fault at FI output Motor cable is too long Use external output choke Brake resistor faulty or resistance too low (Section 8)
	4.1	Overcurrent measurement	P537 (pulse current switch-off) was reached $3 x$ within 50ms (only possible if P112 and P536 are disabled) FI is overloaded Check motor data (P201 ... P209)
E005	5.0	Overvoltage, Ud	Frequency inverter link circuit voltage is too high Reduce energy return by means of a braking resistance Extend braking time (P103) If necessary, set switch-off mode (P108) with delay (not for lifting equipment) Extend quick stop time (P426)
	5.1	Overvoltage mains	Mains voltage is too high Please check 380V-20\% ... 480V+10\% or 200 ... $240 \mathrm{~V} \pm 10 \%$
E006	---	reserved	
E007	---	reserved	

Display in the SimpleBox		Error Text in the Parameter Box	Cause Remedy
Group	$\begin{aligned} & \text { Details in } \\ & \text { P700[-01] / } \\ & \text { P701 } \end{aligned}$		
E008	8.0	Parameter lost (EEPROM - Maximum value exceeded)	Error in EEPROM data Software version of the stored data set not compatible with the software version of the FI. NOTE: Faulty parameters are automatically reloaded (factory setting). EMC interferences (see also E020)
	8.1	Inverter ID error	EEPROM faulty
	8.2	External EEPROM error	--
	8.3	EEPROM KSE error (Customer interface incorrectly identified (customer's interface equipment))	The upgrade level of the frequency inverter was not correctly identified.
	8.4	EEPROM internal error (Database version incorrect)	Switch mains voltage off and on again.
	8.5	No EEPROM detected	
	8.6	EEPROM copy is used	
	8.7	EEPROM copy differs	
	8.8	EEPROM is blank	
	8.9	EEP Controlbox too small	
E009	---	reserved	

Display in the SimpleBox		Error Text in the Parameter Box	Cause Remedy
Group	$\begin{aligned} & \text { Details in } \\ & \text { P700[-01] / } \\ & \text { P701 } \end{aligned}$		
E010	10.0	Bus timeout (Telegram timeout/ Bus off 24 V int. CANbus)	Data transfer is faulty. Check P513. Check external bus connection. Check bus protocol program process. Check Bus master. Check 24V supply of internal CAN/CANopen Bus. Nodeguarding error (internal CANopen) Bus Off error (internal CANbus)
	10.2	Bus timeout Option (External bus module telegram time-out)	Telegram transfer is faulty. Check external connection. Check Bus Protocol program process. Check Bus master.
	10.4	Initiation error, Option (External bus module initialisation failure)	Check P746. Bus module not correctly plugged in. Check Bus module current supply. DIP switch setting of a connected I/O extension module is incorrect
	10.1	System error, Option (External bus module)	Further details can be found in the relevant additional BUS operating instructions. I/O extension: Incorrect measurement of the input voltage or undefined provision of the output voltage due to error in reference voltage generation. Short circuit at analog output
	10.3		
	10.5		
	10.6		
	10.7		
	10.8	Error, Option (External module communication failure)	Connection fault / error in the external component
	10.9	Missing Option IP120	Module entered in P120 is not available.
E011	11.0	Control terminals (Customer Unit) (analog/digital converter error)	Internal Customer Unit (internal data bus) faulty or disturbed by radio emissions (EMC). Check control terminals connection for short-circuit. Minimise EMC interference through separate laying of control and power cables. Device and shielding must be well earthed.

Display in the SimpleBox		Error Text in the Parameter Box	Cause Remedy
Group	Details in P700[-01] / P701		
E012	12.0	External watchdog	The Watchdog function is selected at a digital input and the impulse at the corresponding digital input is not present for longer than the time set in parameter P460 > Watchdog time<.
	12.1	Limit motor ICustomer	The drive switch-off limit P534 [01] has triggered. Reduce load on motor. Set a higher value in (P534 [-01]).
	12.2	Limit generator	The generator switch-off limit (P534 [-02]) has triggered. Reduce load on motor. Set a higher value in (P534 [-02]).
	12.3	Torque limit	Limit from potentiometer or setpoint source has switched off. $P 400=12$
	12.4	Current limit	Limit from potentiometer or setpoint source has switched off. $\text { P400 = } 14$
	12.8	Analog Input minimum	Switch-off due to undershooting of the 0% adjustment value (P402) with setting (P401) "0-10V with switch-off after fault 1" or "... 2"
	12.9	Analog Input maximum	Switch-off due to overshooting of the 100% adjustment value (P402) with setting (P401) "0-10V with switch-off after fault 1" or "... 2"
E013	13.0	Encoder error	No signal from encoder Check 5V sensor if available. Check supply voltage of encoder.
	13.1	Speed slip error	The slip speed error limit was reached. Increase setting in P327.
	13.2	Disconnection control	The slip error monitoring was triggered; the motor could not follow the setpoint. Check motor data P201-P209! This data is very important for the current controller. Check motor circuit. If necessary, check the encoder setting P300 and the following parameters in Servo mode. Increase setting value for torque limit in P112. Increase setting value for current limit in P536.
E014		See BU0210 (Supplementa	tructions for POSICON functionality)

Display in the SimpleBox		Error Text in the Parameter Box	Cause Remedy
Group	$\begin{aligned} & \text { Details in } \\ & \text { P700[-01] / } \\ & \text { P701 } \end{aligned}$		
E015	15.0	Wrong software version	Check software version
	15.1	P watchdog	System error in program execution, triggered by EMC interference. Please comply with wiring guidelines in Section 2.5. Use additional external mains filter. (Section 9.3 / 9.4 EMC) FI must be very well earthed.
	15.2	P stack overflow	
	15.3	P stack underflow	
	15.4	Undefined P opcode	
	15.5	P Protected Instruct	
	15.6	P illegal WordAccess	
	15.7	P illegal InstAccess	
	15.8	P Program memory error	
E016	16.0	Motor phase error	A motor phase is not connected. Check P539 Check motor connections
	16.1	Magnetisation Current Watch	Required excitation current not achieved at moment of switch-on. Check P539 Check motor connections
E018	18.0	Safety circuit	The safe pulse block was triggered while the frequency inverter was being enabled. Only available in SK 215E and SK 235E. Details in Manual BU 0230 (www.nord.com).
E019	19.0	Parameter identification	Automatic identification of the connected motor was unsuccessful Check motor connections Check preset motor data (P201 ... P209)
	19.1	Motor star-/ delta circuit incorrect	

Display in the SimpleBox		Error Text in the Parameter Box	Cause Remedy
Group	$\begin{aligned} & \text { Details in } \\ & \text { P700[-01] / } \\ & \text { P701 } \end{aligned}$		
E020	20.0	reserved	System error in program execution, triggered by EMC interference. Please comply with wiring guidelines in Section 2.5. Use additional external mains filter. (Section 9.3 / 9.4 EMC) FI must be very well earthed.
E021	20.1	Watchdog	
	20.2	Stack overflow	
	20.3	Stack underflow	
	20.4	Undefined opcode	
	20.5	Protected Instruction	
	20.6	Illegal word access	
	20.7	Illegal Instruction Access	
	20.8	Program memory error (EEPROM error)	
	20.9	reserved	
	21.0	NMI error (not used by hardware)	
	21.1	PLL error	
	21.2	ADU error	
	21.3	PMI error	
	21.4	Userstack overflow	

7.2.2 Table of possible error messages in the I/O extension module

Error number		Error Text in the Parameter Box	Cause Remedy
Group	Details in P170		
E1000	1000	EEPROM error	EMC interference on the SPI bus Module faulty
	1030	System bus, Bus Off	Check connections and cables Ensure 24 V power supply Check Bus master.
E2000	2000	DIP changed/fault	DIP switch configuration changed during operation
	2001	DIP invalid configuration	Illegal DIP switch setting Check DIP switch setting. Note coding of analog inputs and outputs!
	2010	Analog output fault	Check switching of 10 V reference voltage Short circuit of analog output Analog output overload (max. 10mA) Calibration error (P152) A range error has occurred during measurement of the correction values The measured values could not be saved in the EEPROM

7.3 Table of possible warning messages

Display in the SimpleBox		Warning Text in the Parameter Box	Cause Remedy
Group	Details in P700 [-02]		
C001	1.0	Inverter overtemperature (inverter heat sink)	Warning from output stage module (static) Reduce ambient temperature $<50^{\circ} \mathrm{C}$ or $\angle 40^{\circ} \mathrm{C}$ (see also Section 8 Technical data). Check control cabinet ventilation
C002	2.0	Motor overtemperature PTC	Warning from motor temperature sensor (triggering threshold reached) Reduce motor load Increase motor speed Use external motor fan
	2.1	Motor overtemperature $\mathbf{I}^{2} \mathbf{t}$ (Only if $\mathrm{I}^{2} \mathrm{t}$ - motor (P535) is programmed.)	Warning: Motor I^{2} t monitoring (Attainment of $1.3 x$ the rated current for the period specified in (P535)) Reduce motor load Increase motor speed
	2.2	Ext. brake resistor overtemperature Overtemperature via digital input (P420 [...])=\{13\}	Warning: Temperature monitor has triggered Digital input is Low
C003	3.0	Overcurrent $\mathrm{I}^{2} \mathrm{t}$ limit	Warning: Rectifier $I^{2} t$ limit, (e.g. output current > NFI current rating) (Attainment of $1.3 x$ the inverter current rating for a period of 60 s) Continuous overload at inverter output (Please also note P504)
	3.1	Overcurrent, chopper $U^{2} t$	Warning: $U^{2} t$ limit for brake chopper has triggered (Attainment of $1.3 x$ the value for a period of 60 s) (Please also note P555, P556, P557) Avoid overcurrent in braking resistance
	3.5	Torque current limit	Warning: torque current limit reached (P112)
	3.6	Current limit	Warning: current limit reached (P536)

Display in the SimpleBox		Warning Text in the Parameter Box	Cause Remedy
Group	$\begin{aligned} & \text { Details in } \\ & \text { P700 [-02] } \end{aligned}$		
C004	4.1	Overcurrent measurement	Warning: Pulse switch-off is active The limiting value for the activation of the pulse switch-off (P537) has been reached (only possible if P112 and P536 are switched off) Fl is overloaded Check motor data (P201 ... P209)
C012	12.1	Limit motor /Customer	Warning: 80\% of the drive switch-off limit (P534 [-01]) has been exceeded. Reduce load on motor. Set a higher value in (P534 [-01]).
	12.2	Limit generator	Warning: 80% of the generator switch-off limit (P534 [-02]) has been exceeded. Reduce load on motor. Set a higher value in (P534 [-02]).
	12.3	Torque limit	Warning: 80\% of the limit from the potentiometer or the setpoint source has been reached. P400 $=12$
	12.4	Current limit	Warning: 80% of the limit from the potentiometer or the setpoint source has been reached. P400 $=14$

7.4 Table of possible reasons for the operating status "Switch-on block"

		Reason Text in the Parameter Box	Cause Remedy
Group	Details in P700 [-03]		
1000	0.1	Voltage blocked by IO	With the function "Block voltage" the parameterised input (P420 / P480) is set to Low Set input to "High" Check signal cable (broken cable)
	0.2	Quick stop by 10	With the function "Quick stop" the parameterised input (P420 / P480) is set to Low Set input to "High" Check signal cable (broken cable)
	0.3	Voltage blocked by bus	With bus operation (P509): Control word Bit 1 "Low"
	0.4	Quick stop by bus	With bus operation (P509): Control word Bit 2 "Low"
	0.5	Enable at start	Enable signal (control word, Dig I/O or Bus I/O) was already present during the initialisation phase (after mains "ON" or control voltage "ON"). Only give enable signal after completion of initialisation (i.e. when the Fl is on standby) Activation of "Automatic start" (P428)
1006	6.0	Charging error	Charging relay not actuated, because Mains / link voltage too low Mains voltage failure Evacuation run activated (Parameter (P420) / (P480))
1014	14.4	Absolute encoder error	Absolute encoder not ready

8 Technical data

8.1 General data Frequency inverter series SK 200E

8.2 General data for mains/setpoint modules

8.3 Electrical data for frequency inverter

The following table lists the electrical data for series SK200E frequency inverters. The details based on measurement series for the operating modes are for orientation purposes and may deviate in practice. The measurement series were made at the rated speed with 4-pole NORD standard motors
The following factors have a particular influence on the determined limiting values:

Wall mounting

- Installation location
- Influence from adjacent devices
- Additional air currents
and also with

Motor mounted

- type of motor used,
- size of motor used
- speed of self-ventilated motors
- use of external fans

NOTE

The powers stated for the operating modes are only a rough categorisation
The current values are more reliable details for the selection of the correct frequency inverter/motor combination!

More detailed information can be obtained from Getriebebau Nord.

8.3.1 Electrical data 1~115V

	Size 1		Size 2	
Device type: SK 2xxE...	-250-112-O	-370-112-O	-550-112-O	-750-112-O
Rated motor power 230V	0.25 kW	0.37 kW	0.55 kW	0.75 kW
(4-pole standard motor) 240V	1/3 hp	$1 / 2 \mathrm{hp}$	$3 / 4 \mathrm{hp}$	1 hp
Mains voltage	$1 \mathrm{AC} 110 \ldots 120 \mathrm{~V}, \pm 10 \%, 47 \ldots 63 \mathrm{~Hz}$			
Output voltage	$3 \mathrm{AC} 0-220 . .240 \mathrm{~V}$			
Nominal output current rms [A] at 230 V	1.7	2.2	3.0	4.0
Min. braking resistor	75Ω	75Ω	75Ω	75Ω
Recommended braking Section resistance 2.3 .1	100Ω	100Ω	100Ω	100Ω
Typical input current at rms [A] 115 V	8.9 A	11 A	13.1 A	20.1 A
Rec. mains fuse $\begin{array}{r}\text { slow- } \\ \\ \text { blowing }[\mathrm{A}]\end{array}$	16 A	16 A	16 A	25 A
Motor-mounted (ventilated)				
maximum continuous power / max. continuous current:				
		$0.25 \mathrm{~kW} / 1.6 \mathrm{~A}$	$0.37 \mathrm{~kW} / 2.6 \mathrm{~A}$	$0.37 \mathrm{~kW} / 2.6 \mathrm{~A}$
S1-40 ${ }^{\circ} \mathrm{C}$	$0.25 \mathrm{~kW} / 1.7 \mathrm{~A}$	$0.25 \mathrm{~kW} / 1.8 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.0 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.0 \mathrm{~A}$
S1-30 ${ }^{\circ} \mathrm{C}$	$0.25 \mathrm{~kW} / 1.7 \mathrm{~A}$	$0.37 \mathrm{~kW} / 2.0 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.0 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.4 \mathrm{~A}$
Maximum permissible ambient temperature with rated output current				
	$47^{\circ} \mathrm{C}$	$23^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$11^{\circ} \mathrm{C}$
S3 70\% switch-on duration 10min	$50^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$
S6 70\% switch-on duration 10min (100\% / 20\%Mn)				
Wall-mounted (unventilated)				
maximum continuous power / max. continuous current:				
	$0.25 \mathrm{~kW} / 1.6 \mathrm{~A}$	$0.25 \mathrm{~kW} / 1.6 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.0 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.0 \mathrm{~A}$
S1-40 ${ }^{\circ} \mathrm{C}$	$0.25 \mathrm{~kW} / 1.7 \mathrm{~A}$	$0.37 \mathrm{~kW} / 2.0 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.0 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.3 \mathrm{~A}$
S1-30 ${ }^{\circ} \mathrm{C}$	$0.25 \mathrm{~kW} / 1.7 \mathrm{~A}$	$0.37 \mathrm{~kW} / 2.1 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.0 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.6 \mathrm{~A}$
Maximum permissible ambient temperature with rated output current				
S1 S3 70\% switch-on duration 10min S6 70\% switch-on duration 10 min (100\% / 20\%Mn)	$48^{\circ} \mathrm{C}$	$36^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$16^{\circ} \mathrm{C}$
	$50^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$
		$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$

8.3.2 Electrical data 1~230V

	Size 1			Size 2	
Device type: SK 2xxE...	-250-123-A	-370-123-A	-550-123-A	-750-123-A	-111-123-A
Rated motor power 230V	0.25 kW	0.37 kW	0.55 kW	0.75 kW	1.1 kW
(4-pole standard motor)	$1 / 3 \mathrm{hp}$	$1 / 2 \mathrm{hp}$	$3 / 4 \mathrm{hp}$	1 hp	$11 / 2 \mathrm{hp}$
Mains voltage	$1 \mathrm{AC} 200 . . .240 \mathrm{~V}, \pm 10 \%, 47 \ldots 63 \mathrm{~Hz}$				
Output voltage	3 AC 0 - Mains voltage				
Rated output current at 230 V	1.7	2.2	2.9	4.0	5.5
Min. braking resistor	75Ω				
Recommended braking Section resistance 2.3 .1	100Ω				
Typical input current at rms [A] 230 V	3.9	5.8	7.3	10.2	14.7
$\begin{array}{lr}\text { Rec. mains fuse } & \begin{array}{r}\text { slow- } \\ \text { blowing }[\mathrm{A}]\end{array}\end{array}$	10	10	16	16	16
Motor-mounted (ventilated)					
maximum continuous power / max. continuous current:					
$51-50^{\circ} \mathrm{C}$	0.25kW / 1.6A	0.25kW / 1.8A	$0.37 \mathrm{~kW} / 2.5 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.4 \mathrm{~A}$	0.75kW / 4.3A
S1-40 ${ }^{\circ} \mathrm{C}$	$0.25 \mathrm{~kW} / 1.7 \mathrm{~A}$	0.37kW / 2.0A	$0.55 \mathrm{~kW} / 2.8 \mathrm{~A}$	$0.55 \mathrm{~kW} / 3.7 \mathrm{~A}$	$0.75 \mathrm{~kW} / 4.8 \mathrm{~A}$
S1-30 ${ }^{\circ} \mathrm{C}$	$0.25 \mathrm{~kW} / 1.7 \mathrm{~A}$	$0.37 \mathrm{~kW} / 2.2 \mathrm{~A}$	$0.55 \mathrm{~kW} / 2.9 \mathrm{~A}$	$0.75 \mathrm{~kW} / 4.0 \mathrm{~A}$	1.10kW / 5.4A
Maximum permissible ambient temperature with rated output current					
	$49^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$36^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$29^{\circ} \mathrm{C}$
S3 70% switch-on duration 10 min	$50^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
S6 70\% switch-on duration 10 min (100% / 20\%Mn)					
Wall-mounted (unventilated)					
maximum continuous power / max. continuous current:					
S1-50 ${ }^{\circ} \mathrm{C}$	0.25kW / 1.5A	$0.37 \mathrm{~kW} / 2.2 \mathrm{~A}$	$0.37 \mathrm{~kW} / 2.7 \mathrm{~A}$	0.75kW / 4.0A	0.75kW / 4.3A
S1-40 ${ }^{\circ} \mathrm{C}$	0.25kW / 1.7A	$0.37 \mathrm{~kW} / 2.2 \mathrm{~A}$	$0.55 \mathrm{~kW} / 2.9 \mathrm{~A}$	$0.75 \mathrm{~kW} / 4.0 \mathrm{~A}$	0.75kW / 4.8A
$51-30^{\circ} \mathrm{C}$	0.25kW / 1.7A	0.37kW / 2.2A	$0.55 \mathrm{~kW} / 2.9 \mathrm{~A}$	$0.75 \mathrm{~kW} / 4.0 \mathrm{~A}$	1.10kW / 5.3A
Maximum permissible ambient temperature with rated output current					
S1 S3 70\% switch-on duration 10 min S6 70\% switch-on duration 10 min ($100 \% / 20 \% \mathrm{Mn}$)	$44^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$42^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$27^{\circ} \mathrm{C}$
	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$

8.3.3 Electrical data 3~230V

	Size 2		Size 3	
Device type: SK 2xxE...	-151-323-A	-221-323-A	-301-323-A	-401-323-A
Rated motor power 230 V	1.5 kW	2.2 kW	3.0 kW	4.0 kW
(4-pole standard motor)	2 hp	3 hp	4 hp	5 hp
Mains voltage	$3 \mathrm{AC} 200 \ldots 240 \mathrm{~V}, \pm 10 \%, 47 \ldots 63 \mathrm{~Hz}$			
Output voltage	3 AC 0 - Mains voltage			
Rated output current rms [A] at 230 V	7.0	9.5	12.5	16.0
Min. braking resistor Accessorie	62Ω	62Ω	33Ω	33Ω
Recommended braking Section resistance 2.3 .1	200Ω	200Ω	100Ω	100Ω
$\begin{aligned} & \text { Typical input current at } \begin{array}{l} \text { rms }[\mathrm{A}] \\ 230 \mathrm{~V} \end{array} \end{aligned}$	6.6	9.1	11.8	15.1
Rec. mains fuse $\begin{array}{r}\text { slow- } \\ \text { blowing }[\mathrm{A}]\end{array}$	16	20	20	25
Motor-mounted (ventilated)				
maximum continuous power / max. continuous current:				
$\mathrm{S} 1-50^{\circ} \mathrm{C}$	$1.50 \mathrm{~kW} / 7.0 \mathrm{~A}$	$1.50 \mathrm{~kW} / 9.2 \mathrm{~A}$	$3.0 \mathrm{~kW} / 12.5 \mathrm{~A}$	3.0kW / 14.5A
S1-40 ${ }^{\circ} \mathrm{C}$	1.50kW / 7.0A	$2.20 \mathrm{~kW} / 9.5 \mathrm{~A}$	$3.0 \mathrm{~kW} / 12.5 \mathrm{~A}$	$4.0 \mathrm{~kW} / 16.0 \mathrm{~A}$
Maximum permissible ambient temperature with rated output current				
S1	$50^{\circ} \mathrm{C}$	$49^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$46^{\circ} \mathrm{C}$
S3 70\% switch-on duration 10min	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$47^{\circ} \mathrm{C}$
S6 70\% switch-on duration 10 min (100\% / 20\%Mn)	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$47^{\circ} \mathrm{C}$
Wall-mounted (unventilated)				
maximum continuous power / max. continuous current:				
S1-50 ${ }^{\circ} \mathrm{C}$	$0.55 \mathrm{~kW} / 3.8 \mathrm{~A}$	$0.75 \mathrm{~kW} / 4.7 \mathrm{~A}$	1.1kW / 6.8A	$1.1 \mathrm{~kW} / 6.8 \mathrm{~A}$
$51-40^{\circ} \mathrm{C}$	$0.75 \mathrm{~kW} / 4.8 \mathrm{~A}$	$1.10 \mathrm{~kW} / 5.8 \mathrm{~A}$	$1.5 \mathrm{~kW} / 8.7 \mathrm{~A}$	1.5kW / 8.7A
S1-30 ${ }^{\circ} \mathrm{C}$	1.10kW / 5.7A	$1.50 \mathrm{~kW} / 6.7 \mathrm{~A}$	$2.2 \mathrm{~kW} / 10.4 \mathrm{~A}$	$2.2 \mathrm{~kW} / 10.4 \mathrm{~A}$
Maximum permissible ambient temperature with rated output current				
S1	$15^{\circ} \mathrm{C}$	$6^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$	$-4^{\circ} \mathrm{C}$
S3 70\% switch-on duration 10min	$25^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$
S6 70\% switch-on duration 10 min (100% / 20\%Mn)	$20^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$

8.3.4 Electrical data 3~400V

	Size 1				
Device type: SK 2xxE...	-550-340-A	-750-340-A	-111-340-A	-151-340-A	-221-340-A
Rated motor power 400V	0.55 kW	0.75 kW	1.1 kW	1.5 kW	2.2 kW
(4-pole standard motor) 480 V	$3 / 4 \mathrm{hp}$	1 hp	$11 / 2 \mathrm{hp}$	2 hp	3 hp
Mains voltage	3 AC 380 ... 500V, -20\% / +10\%, $47 \ldots 63 \mathrm{~Hz}$				
Output voltage	3 AC 0 - Mains voltage				
Rated output current rms [A] at 400 V	1.7	2.3	3.1	4.0	5.5
Min. braking resistor	200Ω				
Recommended braking Section resistance 2.3 .1	400Ω				
Typical input current at rms [A] 400 V	1.6	2.2	2.9	3.7	5.7
Rec. mains fuse $\begin{array}{r}\text { slow- } \\ \text { blowing }[\mathrm{A}]\end{array}$	10	10	10	10	10
Motor-mounted (ventilated)					
maximum continuous power / max. continuous current:					
S1-50 ${ }^{\circ} \mathrm{C}$	$0.55 \mathrm{~kW} / 1.7 \mathrm{~A}$	$0.75 \mathrm{~kW} / 2.3 \mathrm{~A}$	1.10kW / 3.1A	1.50kW / 4.0A	2.20kW / 5.5A
Maximum permissible ambient temperature with rated output current					
S1	$50^{\circ} \mathrm{C}$				
S3 70\% switch-on duration 10 min	$50^{\circ} \mathrm{C}$				
S6 70\% switch-on duration 10min (100% / 20\%Mn)	$50^{\circ} \mathrm{C}$				
Wall-mounted (unventilated)					
maximum continuous power / max. continuous current:					
S1-50 ${ }^{\circ} \mathrm{C}$	$0.55 \mathrm{~kW} / 1.7 \mathrm{~A}$	$0.75 \mathrm{~kW} / 2.3 \mathrm{~A}$	0.75kW / 2.8A	$0.75 \mathrm{~kW} / 2.8 \mathrm{~A}$	$0.75 \mathrm{~kW} / 2.8 \mathrm{~A}$
S1-40 ${ }^{\circ} \mathrm{C}$	$0.55 \mathrm{~kW} / 1.7 \mathrm{~A}$	$0.75 \mathrm{~kW} / 2.3 \mathrm{~A}$	$1.10 \mathrm{~kW} / 3.1 \mathrm{~A}$	$1.10 \mathrm{~kW} / 3.3 \mathrm{~A}$	$1.10 \mathrm{~kW} / 3.3 \mathrm{~A}$
S1-30 ${ }^{\circ} \mathrm{C}$	$0.55 \mathrm{~kW} / 1.7 \mathrm{~A}$	$0.75 \mathrm{~kW} / 2.3 \mathrm{~A}$	1.10kW / 3.1A	$1.50 \mathrm{~kW} / 3.9 \mathrm{~A}$	1.50kW / 3.9A
Maximum permissible ambient temperature with rated output current					
S1	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$29^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$
S3 70% switch-on duration 10 min	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$
S6 70\% switch-on duration 10min (100% / 20\%Mn)	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$

	Size 2		Size 3	
Device type: SK 2xxE...	-301-340-A	-401-340-A	-551-340-A	-751-340-A
Rated motor power 400V	3.0 kW	4.0 kW	5.5 kW	7.5 kW
(4-pole standard motor)	4 hp	5 hp	$71 / 2 \mathrm{hp}$	10 hp
Mains voltage	3 AC 380 ... 500V, -20\% / +10\%, $47 \ldots 63 \mathrm{~Hz}$			
Output voltage	3 AC 0 - Mains voltage			
Rated output current rms [A] at 400 V	7.5	9.5	12.5	16.0
Min. braking resistor	110Ω	110Ω	68Ω	68Ω
Recommended braking Section resistance 2.3 .1	200Ω	200Ω	200Ω	200Ω
Typical input current at rms [A] 400 V	7.0	8.3	11.7	15.0
Rec. mains fuse $\quad \begin{array}{r}\text { slow- } \\ \text { blowing }[\mathrm{A}]\end{array}$	16	16	20	25
Motor-mounted (ventilated)				
maximum continuous power / max. continuous current:				
$\mathrm{S} 1-50^{\circ} \mathrm{C}$	$2.2 \mathrm{~kW} / 5.5 \mathrm{~A}$	$3.0 \mathrm{~kW} / 8.0 \mathrm{~A}$	4.0kW / 11.8A	$5.5 \mathrm{~kW} / 13.8 \mathrm{~A}$
S1-40 ${ }^{\circ} \mathrm{C}$	$3.0 \mathrm{~kW} / 7.5 \mathrm{~A}$	4.0kW / 9.5A	$5.5 \mathrm{~kW} / 12.5 \mathrm{~A}$	$7.5 \mathrm{~kW} / 16.0 \mathrm{~A}$
Maximum permissible ambient temperature with rated output current				
S1	$43^{\circ} \mathrm{C}$	$41^{\circ} \mathrm{C}$	$48^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
S3 70\% switch-on duration 10min	$45^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$
S6 70\% switch-on duration 10 min ($100 \% / 20 \% \mathrm{Mn}$)				
Wall-mounted (unventilated)				
maximum continuous power / max. continuous current:				
S1-50 ${ }^{\circ} \mathrm{C}$	$1.1 \mathrm{~kW} / 3.1 \mathrm{~A}$	1.5kW / 4.0A	$1.5 \mathrm{~kW} / 5.3 \mathrm{~A}$	2.2kW / 6.3A
$51-40^{\circ} \mathrm{C}$	1.5kW / 4.0A	1.5kW / 4.9A	2.2kW / 6.9A	$3.0 \mathrm{~kW} / 7.9 \mathrm{~A}$
S1-30 ${ }^{\circ} \mathrm{C}$	1.5kW / 4.8A	2.2kW / 5.7A	$3.0 \mathrm{~kW} / 8.4 \mathrm{~A}$	4.0kW / 9.4A
Maximum permissible ambient temperature with rated output current				
S1 S3 70\% switch-on duration 10 min S6 70\% switch-on duration 10 min (100\% / 20\%Mn)	$-3^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$-18^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$

8.3.5 Electrical data for UL certification

The data given in this section must be taken into account in order to comply with UL certification or cUL certification. Details of the certification conditions can be found in Section 1.5.2.

The details for the rated current output refer to an ambient temperature of $40^{\circ} \mathrm{C}$ with operation under the rated conditions (4-pole, 50 Hz ventilated motor).

Size 1 / $2-1 \sim 115 \mathrm{~V}$ mains				
Device type: SK 2xxE...	-250-112-O	-370-112-O	-550-112-0	-750-112-O
Rated motor power 110V	0.25 kW	0.37 kW	0.55 kW	0.75 kW
(4-pole standard motor)	$1 / 3 \mathrm{hp}$	$1 / 2 \mathrm{hp}$	$3 / 4 \mathrm{hp}$	1 hp
FLA $\quad 1 \mathrm{AC}$ min. mains fuse	8.9 A	11 A	13.1 A	20.1 A
RK5 or faster fuses, min 115V	30 A	30 A	30 A	30 A
Max. mains Bussmann fuse	FRS-R-30	FRS-R-30	FRS-R-30	FRS-R-30
Circuit breaker* min. 115 V	25 A	25 A	25 A	25 A
Rated output current at $40^{\circ} \mathrm{C}$$\quad$Motor mounted Wall mounting	$\begin{aligned} & \hline 1.7 \mathrm{~A} \\ & 1.7 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 1.7 \mathrm{~A} \\ & 2.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 3.0 \mathrm{~A} \\ & 3.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 3.0 \mathrm{~A} \\ & 3.3 \mathrm{~A} \end{aligned}$

*Circuit Breaker (inverse time trip type) as per UL489

Size 1 / 2 - 1~230V mains						
Device type:	SK 2 xxE ...	-250-123-A	-370-123-A	-550-123-A	-750-123-A	-111-123-A
Rated motor power	220 V	0.25 kW	0.37 kW	0.55 kW	0.75 kW	1.1 kW
(4-pole standard motor)	240 V	$1 / 3 \mathrm{hp}$	$1 / 2 \mathrm{hp}$	$3 / 4 \mathrm{hp}$	1 hp	$11 / 2 \mathrm{hp}$
FLA $\quad 1$ AC min. mains fuse	[A]	4.0	6.1	7.9	10.2	14.7
Max. mains fuse	RK5 or faster fuses, min 230V	10 A	10 A	10 A	30 A	30 A
	Bussmann	FRS-R-10	FRS-R-10	FRS-R-10	FRS-R-30	FRS-R-30
	Circuit breaker* min. 230 V	10 A	10 A	10 A	25 A	25 A
Rated output current at $40^{\circ} \mathrm{C}$	Motor mounted Wall mounting	$\begin{aligned} & \hline 1.7 \mathrm{~A} \\ & 1.7 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~A} \\ & 2.2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.6 \mathrm{~A} \\ & 2.9 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 3.7 \mathrm{~A} \\ & 4.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 4.4 \mathrm{~A} \\ & 4.8 \mathrm{~A} \end{aligned}$

*Circuit Breaker (inverse time trip type) as per UL489

Size 1 - 3~230V mains

Device type:	SK $2 \times x E \ldots$	-250-323-A	-370-323-A	-550-323-A	-750-323-A	-111-323-A
Rated motor power	220 V	0.25 kW	0.37 kW	0.55 kW	0.75 kW	1.1 kW
(4-pole standard motor)	240 V	$1 / 3 \mathrm{hp}$	$1 / 2 \mathrm{hp}$	$3 / 4 \mathrm{hp}$	1 hp	$11 / 2 \mathrm{hp}$
FLA 3 AC min mains fuse	[A]	1.4	1.9	2.6	3.5	5.1
Max. mains fuse	RK5 or faster fuses, min 230V	5.0 A	5.0 A	10 A	10 A	10 A
	Bussmann	FRS-R-5	FRS-R-5	FRS-R-10	FRS-R-10	FRS-R-10
	Circuit breaker* min. 230 V	5.0 A	5.0 A	10 A	10 A	10 A
Rated output current at $40^{\circ} \mathrm{C}$	Motor mounted Wall mounting	$\begin{aligned} & 1.7 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ & 1.7 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ & 2.2 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ & 3.0 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 4.0 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 3.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} 5.5 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 4.0 \mathrm{~A} \end{gathered}$

${ }^{*}$ Circuit Breaker (inverse time trip type) as per UL489

Size 2 / 3-3~230V mains

Device type:	SK $2 \times x$...	-151-323-A	-221-323-A	-301-323-A	-401-323-A
Rated motor power	220 V	1.5 kW	2.2 kW	3.0 kW	4.0 kW
(4-pole standard motor)	240 V	2 hp	3 hp	4 hp	5 hp
FLA 3 AC min. mains fuse	[A]	6.6	9.1	11.7	14.9
Max. mains fuse	RK5 or faster fuses, $\min 230 \mathrm{~V}$	10 A	30 A	30 A	30 A
	Bussmann	FRS-R-10	FRS-R-30	FRS-R-30	FRS-R-30
	Circuit breaker* min. 230 V	10 A	25 A	25 A	25 A
Rated output current at $40^{\circ} \mathrm{C}$	Motor mounted Wall mounting	$\begin{gathered} \hline 7.0 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 4.8 \mathrm{~A} \end{gathered}$	$\begin{gathered} 9.5 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 5.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} \hline 12.5 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 8.0 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 16.0 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 8.0 \mathrm{~A} \\ \hline \end{gathered}$

*Circuit Breaker (inverse time trip type) as per UL489

Size 1-400V mains						
Device type:	SK 2xxE...	-550-340-A	-750-340-A	-111-340-A	-151-340-A	-221-340-A
Rated motor power	380 V	0.55 kW	0.75 kW	1.1 kW	1.5 kW	2.2 kW
(4-pole standard motor)	$\begin{array}{r} 460 \ldots \\ 480 \mathrm{~V} \end{array}$	$3 / 4 \mathrm{hp}$	1 hp	$11 / 2 \mathrm{hp}$	2 hp	3 hp
FLA 3 AC min. mains fuse	[A]	1.6	2.2	2.9	3.7	5.7
Max. mains fuse	RK5 or faster fuses, min 230/400V	5.0 A	5.0 A	10 A	10 A	10 A
	Bussmann	FRS-R-5	FRS-R-5	FRS-R-10	FRS-R-10	FRS-R-10
	Circuit breaker* min. 230/400V	5.0 A	5.0 A	10 A	10 A	10 A
Rated output current at $40^{\circ} \mathrm{C}$	Motor mounted Wall mounting	$\begin{aligned} & 1.7 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ & 1.7 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 2.3 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ & 2.3 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ & 3.1 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 4.0 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 3.3 \mathrm{~A} \end{gathered}$	$\begin{gathered} 5.5 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 3.3 \mathrm{~A} \end{gathered}$

*Circuit Breaker (inverse time trip type) as per UL489

Size 2/3-400V mains				
Device type: SK 2xxE...	-301-340-A	-401-340-A	-551-340-A	-751-340-A
Rated motor power 380V	3.0 kW	4.0 kW	5.5 kW	7.5 kW
(4-pole standard $460 \ldots$ motor) 480 V	4 hp	5 hp	$71 / 2 \mathrm{hp}$	10 hp
FLA 3 AC min. mains fuse	7.7	9.6	12.7	16.6
Max. mains fuse	10 A	30 A	30 A	30 A
	FRS-R-10	FRS-R-30	FRS-R-30	FRS-R-30
	10 A	25 A	25 A	25 A
Rated output current at $40^{\circ} \mathrm{C}$ Motor mounted Wall mounting	$\begin{gathered} 7.5 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 4.0 \mathrm{~A} \end{gathered}$	$\begin{gathered} \hline 9.5 \mathrm{~A}(41) \\ 4.9 \mathrm{~A} \end{gathered}$	$\begin{gathered} 12.5 \mathrm{~A}\left(45^{\circ} \mathrm{C}\right) \\ 6.9 \mathrm{~A} \end{gathered}$	$\begin{gathered} 16.0 \mathrm{~A}(43) \\ 7.9 \mathrm{~A} \end{gathered}$

*Circuit Breaker (inverse time trip type) as per UL489

9 Additional information

9.1 Setpoint processing in the SK200E

9.2 Process controller

The process controller is a PI controller, with which it is possible to limit the controller output. In addition, the output is standardised to a percentage of a master setpoint value. This provides the possibility of controlling an upstream drive unit with the master setpoint value and adjusting it with the PI controller.

Fig.: Process controller flow-chart

9.2.1 Process controller application example

9.2.2 Process controller parameter settings

(Example: Setpoint frequency: 50 Hz , control limits: +/- 25\%)

P105 (Maximum frequency) $[\mathrm{Hz}] \quad: \geq$ Setpointfrq. $[\mathrm{Hz}]+\left(\frac{\text { Setpointfrq. }[\mathrm{Hz}] \times P 415[\%]}{100 \%}\right)$

Example: $\geq 50 \mathrm{~Hz}+\frac{50 \mathrm{~Hz} \times 25 \%}{100 \%}=62,5 \mathrm{~Hz}$

P400 [-01] (Funct. Analog input1) : "2"" (frequency addition)
P411 (Setpoint frequency) $[\mathrm{Hz}]$: Setpoint frequency with 10 V at analog input 1

Example: $\mathbf{5 0 ~ H z}$

P412 (Process controller setpoint) : Central setting of compensating roller / factory setting 5V (adjust if necessary)

P413 (P-controller) [\%] : factory setting 10\% (adjust if necessary)
P414 (l-controller) [\%/ms] : recommended 100\%/s
P415 (Limit +/-) [\%] : Control limit (see above)
Note: Parameter P415 is used as a control limit after the PI controller.
Example: 25\% of setpoint

P416 (Ramp time PI setpoint) [s] : factory setting 2s (if necessary match to controller characteristics)
P420 [-01] (Funct. Digital input 1) : "1"Enable right
P400 [-02] (Funct. Analog input 2) : "6"PI process controller actual value

9.3 Electromagnetic compatibility

All electrical equipment that have an intrinsic, independent function and are placed on the market as individual units for users from January 1996 must comply with the EU directive EU/89/336. There are three different ways for manufacturers to display compliance with this directive:

1. EC declaration of conformity

This is a declaration from the manufacturer, stating that the requirements in the applicable European standards for the electrical environment of the equipment have been met. Only those standards which are published in the Official Journal of the European Community may be cited in the manufacturer's declaration.
2. Technical documentation

Technical documentation can be produced which describes the EMC characteristics of the device. This documentation must be authorised by one of the "Responsible bodies" named by the responsible European government. This makes it possible to use standards that are still under preparation.
3. EC type test certificate (This method only applies to radio transmitter equipment.)

SK 205E/215E/225E/235E frequency inverters only have an intrinsic function when they are connected to other equipment (e.g. with a motor). The basic units cannot therefore carry the CE mark, which would confirm compliance with the EMC Directive. Precise details are therefore given below about the EMC behaviour of this product, based on the proviso that it is installed according to the guidelines and instructions described in this documentation.

Class A, Group 2: General, for industrial environments

Complies with the EMC standard for power drives EN 61800-3, for use in secondary environments (industrial) and when not generally available.

Class A, Group 1: Interference suppressed, for industrial environments

In this operating class, the manufacturer can certify that his equipment meets the requirements of the EMC directive for industrial environments with respect to their EMC behaviour in power drives. The limit values correspond to the basic standards EN 61000-6-2 and EN 61000-6-4 for interference immunity and interference emissions in industrial environments.

Class B, Group 1: Interference suppressed for domestic, commercial and light industrial environments

In this operating class, the manufacturer can certify that his equipment meets the requirements of the EMC directive for domestic, commercial and light industrial environments with respect to their EMC behaviour in power drives. The limit values correspond to the basic standards EN 61000-6-2 and EN 61000-6-4 for interference immunity and interference emissions.

NORDAC SK 2xxE frequency inverters are only intended for commercial applications. They are therefore not subject to the requirements of the standard EN 61000-3-2 for radiation of harmonics.
This device produces high frequency interference, which may make additional suppression measures necessary in domestic environments.

9.4 EMC limit value classes

Please note that these limit value classes are only reached if the standard pulse frequency (6 kHz) is being used and the length of the shielded motor cable does not exceed the permissible limits.
In addition, it is essential to use wiring suitable for EMC. The motor cable shielding must be applied on both sides (frequency inverter shield angle and the metal motor terminal box).

Device type Max. motor cable, shielded		Cable emissions $150 \mathrm{kHz}-30 \mathrm{MHz}$	
	See Sections 2.7.5 and 2.7.6	Class A 1 \Rightarrow C2	Class B $1 \Rightarrow$ C1
SK $2 \times 5 \mathrm{E}$, motor-mounted	Jumper set	5 m	-
SK 2×5 E wall-mounted	Jumper set	5 m	-

Overview of the standards, which according to product standard EN 61800-3 are applicable as testing and measuring methods for electric drives whose speed can be altered:		
Emission of interference		
Emission from cables (interference voltage)	EN 55011	A 1 or C2
		-
Radiated emissions (Interference field strength)	EN 55011	A 1 or C2
		-
Interference immunity EN 61000-6-1, EN 61000-6-2		
ESD, discharge of static electricity	EN 61000-4-2	6kV (CD), 8kV (AD)
EMF, high frequency electro-magnetic fields	EN 61000-4-3	10V/m; 80-1000MHz
Burst on control cables	EN 61000-4-4	1kV
Burst on mains and motor cables	EN 61000-4-4	2kV
Surge (phase-phase / phase-ground)	EN 61000-4-5	$1 \mathrm{kV} / 2 \mathrm{kV}$
Cable-led interference due to high frequency fields	EN 61000-4-6	10V, $0.15-80 \mathrm{MHz}$
Voltage fluctuations and drops	EN 61000-2-1	+10\%, -15\%; 90\%
Voltage asymmetries and frequency changes	EN 61000-2-4	3\%; 2\%

Wiring recommendations for mounting near to motor

9.5 Reduced output power

The SK 200E frequency inverter series is designed to handle certain overload situations. For example, $1.5 x$ overcurrent can be used for 60 sec . For approx. 3.5 sec a 2 x overcurrent is possible. A reduction of the overload capacity or its time must be taken into account in the following circumstances:
o Output frequencies $<2 \mathrm{~Hz}$ and constant voltages (needle stationary)
o Pulse frequencies greater than the rated pulse frequency (P504)
o Increased mains voltage $>400 \mathrm{~V}$
o Increased heat sink temperature
On the basis of the following characteristic curves, the particular current / power limitation can be read off.

9.5.1 Increased heat dissipation due to pulse frequency

This illustration shows how the output current must be reduced, depending on the pulse frequency for 230 V and 400 V devices, in order to avoid excessive heat dissipation in the frequency inverter.
For 400 V devices, the reduction begins at a pulse frequency above 6 kHz . For 230 V devices, the reduction begins at a pulse frequency above 8 kHz .
Even with increased pulse frequencies the frequency inverter is capable of supplying its maximum peak current, however only for a reduced period of time. The diagram shows the possible current load capacity for continuous operation.

9.5.2 Reduced overcurrent due to time

The possible overload capacity changes depending on the duration of an overload. Several values are cited in this table. If one of these limiting values is reached, the frequency inverter must have sufficient time (with low utilisation or without load) in order to regenerate itself.
If operated repeatedly in the overload region at short intervals, the limiting values stated in the tables are reduced.

230V devices: Reduced overload capacity (approx.) due to pulse frequency (P504) and time											
Pulse frequency [kHz]	Time [s]							30	20	10	3.5
	>600	60	150%	170%	180%	180%					
$3 . .8$	110%	103%	140%	155%	165%	165%					
10	96%	130%	145%	155%	155%	160%					
12	90%	120%	135%	145%	145%	150%					
14	82%	110%	125%	135%	135%	140%					
16											

400V devices: Reduced overload capacity (approx.) due to pulse frequency (P504) and time

Pulse frequency [kHz]	Time [s]					
	>600	60	30	20	10	3.5
$3 \ldots 6$	110%	150%	170%	180%	180%	200%
8	100%	135%	150%	160%	160%	165%
10	90%	120%	135%	145%	145%	150%
12	78%	105%	120%	125%	125%	130%
14	67%	92%	104%	110%	110%	115%
16	57%	77%	87%	92%	92%	100%

9.5.3 Reduced overcurrent due to output frequency

To protect the power unit at low output frequencies ($<4.5 \mathrm{~Hz}$) a monitoring system is provided, with which the temperature of the IGBTs (integrated gate bipolar transistor) due to high current is determined. In order to prevent current being taken off above the limit shown in the diagram, a pulse switch-off (P537) with a variable limit is introduced. At a standstill, with 6 kHz pulse frequency, current above 1.1 x the nominal current cannot be taken off.

The upper limiting values for the various pulse frequencies can be obtained from the following tables. In all cases, the value ($0.1 \ldots 1.9$) which can be set in parameter P537, is limited to the value stated in the tables according to the pulse frequency. Values below the limit can be set as required.

230V devices: Reduced overload capacity (approx.) due to pulse frequency (P504) and output frequency

Pulse frequency [kHz]	Output frequency [Hz]						
	4.5	3.0	2.0	1.5	1.0	0.5	0
3... 8	200\%	170\%	150\%	140\%	130\%	120\%	110\%
10	180\%	153\%	135\%	126\%	117\%	108\%	100\%
12	160\%	136\%	120\%	112\%	104\%	96\%	95\%
14	150\%	127\%	112\%	105\%	97\%	90\%	90\%
16	140\%	119\%	105\%	98\%	91\%	84\%	85\%

400V devices: Reduced overload capacity (approx.) due to pulse frequency (P504) and output frequency

Pulse frequency [kHz]	Output frequency [Hz]						
	4.5	3.0	2.0	1.5	1.0	0.5	0
$3 \ldots 6$	200%	170%	150%	140%	130%	120%	110%
8	165%	140%	123%	115%	107%	99%	90%
10	150%	127%	112%	105%	97%	90%	82%
12	130%	110%	97%	91%	84%	78%	71%
14	115%	97%	86%	80%	74%	69%	63%
16	100%	85%	75%	70%	65%	60%	55%

9.5.4 Reduced output current due to mains voltage

The devices are designed with thermal characteristics according to the rated output currents. Accordingly, for lower mains voltages, higher currents cannot be taken off in order to maintain the stated power constant. For mains voltages above 400 v there is a reduction of the permissible continuous output current, which is inversely proportional to the mains voltage, in order to compensate for the increased switching losses.

9.5.5 Reduced output current due to the heat sink temperature

The temperature of the heat sink in included in the calculation of the reduction of output current, so that at low heat sink temperatures, a higher load capacity can be permitted, especially for higher pulse frequencies. At high heat sink temperatures, the reduction is increased correspondingly. The ambient temperature and the ventilation conditions for the device can therefore be optimally exploited.

9.6 Operation with FI circuit breakers

With SK 200E frequency inverters (except 115 V devices) leakage currents of $>40 \mathrm{~mA}$ are to be expected with an active mains filter. If possible, an FI circuit breaker for the protection of personnel should not be used.

If the frequency inverter is to be used with an FI circuit breaker for the protection of personnel, the leakage currents to earth must be reduced to $10-20 \mathrm{~mA}$ by means of jumpers. However, with "operation on an IT network" the FI loses its specified degree of interference protection.

Further details can be found in Section 2.7.5-2.7.6.

9.7 System bus

Frequency inverters and components of the SK 200E series communicate with each other via the system bus. This bus system is a CAN bus with a Canopen protocol. Up to four frequency inverters and their associated components (field bus module, absolute encoder, I/O modules etc.) can be connected to the system bus. Integration of the components into the bus does not require any BUS-specific knowledge on the part of the user.
It is only necessary to take care that the correct physical structure of the bus system and the correct addressing of the participants are complied with.

The connection of the individual NORD components is described in this manual (See section 2.8.2, 3.4, and 3.5).

Physical structure

Standard	CAN
Bus length	20 m with a wire cross section of $0.25 \mathrm{~mm}^{2}$ (AWG23)
Structure	preferably linear
Spur cables	possible, (max. 6 m)
Termination resistors	$120 \Omega, 250 \mathrm{~mW}$ at both ends of a system bus (with SK 200E-... or SK xU4-... via DIP switches)
Baud rate	250kBaud - preset

Addressing

If several frequency inverters are connected to a system bus, these devices must be assigned with unique addresses. For preference, this is carried out via the DIP switches on the underside of the SK200E (Section 5.1.2). For the use of CANopen absolute encoders, the encoders must be assigned to the relevant FI via the node ID. If, for example, there are one encoder and four frequency inverters on the system bus and the encoder is to operate with FI3, the node ID 37 must be set on the encoder, see the following table.

Frequency inverter	Addressing via DIP switches DIP 2		Resulting Node ID Frequency inverter	Node ID Absolute value encoder
FI1	OFF	OFF	32	33
FI2	OFF	ON	34	35
FI3	ON	OFF	36	37
FI4	ON	ON	38	39

For field bus modules, no assignment of addresses is necessary. The module identifies all the frequency inverters automatically. Access to the individual inverters is via the field bus master (SPS). Details of how this is carried out are explained in the relevant bus instructions.
I/O extensions must be assigned to the relevant frequency inverter. This is carried out by means of a DIP switch on the I/O module. A special case for the I/O extensions is the "Broadcast" mode. In this mode, the data of the I/O extension (analog values, inputs etc.) are sent to all inverters simultaneously. Via the parameterisation in each individual frequency inverter, a decision is made as to which of the received values are to be used. Further details of the settings can be obtained from this manual (See also Section 3.4.3 or 3.5.4).

NOTE

Care must be taken that each address is only assigned once. In a CAN-based network double assignment of addresses may lead to misinterpretation of the data and therefore undefined activities in the system.

Integration of devices from other manufacturers

In principle, the integration of other devices into this bus system is possible. These must support the CANopen protocol and a 250kBaud baud rate. The address range (Node ID) 1 to 4 is reserved for additional CANopen masters. All other participants must be assigned addresses between 50 and 79 .

9.8 Energy efficiency

NORDAC frequency inverters have very low energy requirements and are therefore very efficient. In addition, by means of "Automatic flux adaptation" (parameter (P219)), the SK 200E provides a facility for improving the energy efficiency of the entire drive unit (especially in applications with partial loads).
According to the torque required, the excitation current is reduced by the frequency inverter or the motor torque to the actual level required by the drive unit. The resulting reduction in current consumption, which may be considerable, and the optimisation of $\cos \varphi$ to ≈ 1 even in the partial load range makes a significant contribution to energy and network optimisation.
Here, a parameterisation which deviates from the factory setting (= 100\%) is only permissible for applications which require rapid torque changes. (For details see Section 6.1.3 parameter (P219))

$\mathbf{I}_{\mathbf{S}}=$ Motor current vector (line current) $\mathbf{I}_{\mathbf{S D}}=$ Excitation current vector (magnetisation current) $\quad \mathbf{I}_{\mathbf{S Q}}=$ Load current vector

No flux adaptation	With flux adaptation	
Motor under full load		Motor under partial load

WARNING

This function is not suitable for lifting applications or applications with frequent or large load changes and parameter (P219) must be left at the factory setting (100\%).

9.9 Motor data - characteristic curves

9.9.1 50 Hz characteristic curve

(\rightarrow Adjustment range 01:10:00)

a) $115 \mathrm{~V} / 230 \mathrm{~V}$ frequency inverter

For 50 Hz operation, the motor can be used at the rated torque up to its rating point of $50 \mathrm{~Hz} / 230 \mathrm{~V}$. In spite of this, operation above 50 Hz is possible, however the output torque reduces in a non-linear manner (see following diagram). Above the rating point the motor enters its field reduction range, as with an increase of frequency above 50 Hz , the voltage can not be increased above 230 V . Due to the mains voltage, only max. 230 V are available.
Up to a power of 4 kW , the following data refer to a $230 / 400 \mathrm{~V}$ motor winding.

Frequency inverter type	Parameterisation data for frequency inverter							
	$\mathrm{F}_{\mathrm{N}}[\mathrm{Hz}]$	$\begin{aligned} & \mathrm{n}_{\mathrm{N}} \\ & {\left[\mathrm{~min}^{-1}\right]} \end{aligned}$	$\mathrm{I}_{\mathrm{N}}[\mathrm{A}]$	$\mathrm{U}_{\mathrm{N}}[\mathrm{V}]$	$\mathrm{P}_{\mathrm{N}}[\mathrm{kW}]$	$\cos \varphi$	Circuit	$\begin{aligned} & \mathrm{R}_{\mathrm{St}} \\ & {[\Omega]} \end{aligned}$
SK...71S/4 TI 4 - SK 2xxE-250-x23-A*	50	1380	1,4	230	0,25	0,77	Delta	36,50
SK...71L/4 TI 4 - SK 2xxE-370-x23-A*	50	1360	1,9	230	0,37	0,77	Delta	23,80
SK...80S/4 TI 4 - SK 2xxE-550-x23-A*	50	1375	2,63	230	0,55	0,73	Delta	15,10
SK...80L/4 TI 4 - SK 2xxE-750-x23-A*	50	1375	3,63	230	0,75	0,74	Delta	10,20
SK...90S/4 TI 4 - SK 2xxE-111-x23-A	50	1385	4,81	230	1,1	0,78	Delta	6,28
SK...90L/4 TI 4 - SK 2xxE-151-323-A	50	1385	6,3	230	1,5	0,80	Delta	4,37
SK...100L/4 TI 4 - SK 2xxE-221-323-A	50	1440	9,03	230	2,2	0,74	Delta	2,43
SK...100LA/4 TI 4 - SK 2xxE-301-323-A	50	1410	12	230	3,0	0,8	Delta	1,81
SK...112M/4 TI 4 - SK 2xxE-401-323-A	50	1445	14,4	230	4,0	0,8	Delta	1,14

* the same data apply for the use of the 115 V version of the SK2xxE

Frequency inverter type	Power data at rating point		
	$\mathrm{P}_{\mathrm{B}}[\mathrm{kW}]$	$\mathrm{n}_{\mathrm{B}}\left[\operatorname{minP}^{-1 \mathrm{P}}\right]$	$\mathrm{M}_{\mathrm{B}}[\mathrm{Nm}]$
SK...71S/4 TI 4 - SK 2xxE-250-x23-A*	0,25	1380	1,73
SK...71L/4 TI 4 - SK 2xxE-370-x23-A*	0,37	1360	2,6
SK...80S/4 TI 4 - SK 2xxE-550-x23-A*	0,55	1375	3,82
SK...80L/4 TI 4 - SK 2xxE-750-x23-A*	0,75	1375	5,21
SK...90S/4 TI 4 - SK 2xxE-111-x23-A	1,1	1385	7,58
SK...90L/4 TI 4 - SK 2xxE-151-323-A	1,5	1385	10,34
SK...100L/4 TI 4 - SK 2xxE-221-323-A	2,2	1440	14,59
SK...100LA/4 TI 4 - SK 2xxE-301-323-A	3,0	1410	20,32
SK...112M/4 TI 4 - SK 2xxE-401-323-A	4,0	1445	26,44

[^12]
b) 400 V frequency inverter

For 50 Hz operation, the motor can be used at the rated torque up to its rating point of $50 \mathrm{~Hz} / 400 \mathrm{~V}$. In spite of this, operation above 50 Hz is possible, however the output torque reduces in a non-linear manner (see following diagram). Above the rating point the motor enters its field reduction range, as with an increase of frequency above 50 Hz , the voltage can not be increased above 400V. Due to the mains voltage, only max. 400V are available.

Up to a power of 2.2 W , the following data refer to a $230 / 400 \mathrm{~V}$ motor winding. Above 3 kW the data is based in 400/690V windings.

Frequency inverter type	Parameterisation data for frequency inverter							
	$\mathrm{F}_{\mathrm{N}}[\mathrm{Hz}]$	$\begin{aligned} & n_{N} \\ & {\left[\mathrm{~min}^{-1}\right]} \end{aligned}$	$\mathrm{I}_{\mathrm{N}}[\mathrm{A}]$	$\mathrm{U}_{\mathrm{N}}[\mathrm{V}]$	$\mathrm{P}_{\mathrm{N}}[\mathrm{kW}]$	$\cos \varphi$	Circuit	$\begin{aligned} & \mathrm{R}_{\mathrm{St}} \\ & {[\Omega]} \end{aligned}$
SK...80S/4 TI 4 - SK 2xxE-550-340-A	50	1375	1,52	400	0,55	0,73	Star	15,10
SK...80L/4 TI 4 - SK 2xxE-750-340-A	50	1375	2,10	400	0,75	0,74	Star	10,20
SK...90S/4 TI 4 -SK 2xxE-111-340-A	50	1385	2,78	400	1,1	0,78	Star	6,28
SK...90L/4 TI 4 - SK 2xxE-151-340-A	50	1385	3,64	400	1,5	0,80	Star	4,37
SK...100L/4 TI 4 - SK 2xxE-221-340-A	50	1440	5,22	400	2,2	0,74	Star	2,43
SK...100LA/4 TI 4 - SK 2xxE-301-340-A	50	1410	6,9	400	3,0	0,8	Delta	5,45
SK...112M/4 TI 4 - SK 2xxE-401-340-A	50	1445	8,3	400	4,0	0,8	Delta	3,44
SK...132S/4 TI 4 - SK 2xxE-551-340-A	50	1445	11,4	400	5,5	0,81	Delta	2,27
SK...132M/4 TI 4 - SK 2xxE-751-340-A	50	1445	14,8	400	7,5	0,84	Delta	1,45

Frequency inverter type	Power data at rating point		
	$\mathrm{P}_{\mathrm{B}}[\mathrm{kW}$]	$\mathrm{n}_{\mathrm{B}}\left[\mathrm{minP}^{-1 \mathrm{P}}\right]$	$\mathrm{M}_{\mathrm{B}}[\mathrm{Nm}]$
SK...80S/4 TI 4 - SK 2xxE-550-340-A	0,55	1375	3,82
SK...80L/4 TI 4 - SK 2xxE-750-340-A	0,75	1375	5,21
SK...90S/4 TI 4 -SK 2xxE-111-340-A	1,1	1385	7,58
SK...90L/4 TI 4 -SK 2xxE-151-340-A	1,5	1385	10,34
SK...100L/4 TI 4 -SK 2xxE-221-340-A	2,2	1440	14,59
SK...100LA/4 TI 4 - SK 2xxE-301-340-A	3,0	1410	20,32
SK...112M/4 TI 4 -SK 2xxE-401-340-A	4,0	1445	26,44
SK...132S/4 TI 4 -SK 2xxE-551-340-A	5,5	1445	36,5
SK...132M/4 TI 4 - SK 2xxE-751-340-A	7,5	1445	49,6

9.9.2 87 Hz characteristic curve (only 400 V devices)

(\rightarrow Adjustment range 01:17:00)

The 87 Hz characteristic curve is an extension of the speed adjustment range with a constant rated torque for the motor. In order to implement this, the following points must be fulfilled:

- Delta motor circuit with $230 / 400 \mathrm{~V}$ motor windings
- Frequency inverter with an operating voltage of 3~400V
- The output current of the frequency inverter must be greater than the delta current of the motor used (Guide value \rightarrow frequency inverter power $\geq \sqrt{ } 3 \times$ motor power)

In this configuration the motor has a rated operating point at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and an extended operating point at $400 \mathrm{~V} / 87 \mathrm{~Hz}$. This increases the power of the drive unit by a factor of $\sqrt{ } 3$. The rated torque of the motor remains constant up to a frequency of 87 Hz . Operation of the 230 V winding with 400 V is not critical, as the insulation is designed for a test voltage of $>1000 \mathrm{~V}$.
NOTE: The following motor data applies for standard motors with $230 / 400 \mathrm{~V}$ windings.

Frequency inverter type	Parameterisation data for frequency inverter							
	$\mathrm{F}_{\mathrm{N}}[\mathrm{Hz}]$	$\mathrm{n}_{N}\left[\mathrm{~min}^{-1}\right]$	$\mathrm{I}_{\mathrm{N}}[\mathrm{A}]$	$\mathrm{U}_{\mathrm{N}}[\mathrm{V}]$	$\mathrm{P}_{\mathrm{N}}[\mathrm{kW}]$	$\cos \varphi$	Circuit	$\begin{aligned} & \mathrm{R}_{\mathrm{St}} \\ & {[\Omega]} \end{aligned}$
SK...71S/4 TI 4 - SK 2xxE-550-340-A	50	1380	1,32	230	0,25	0,77	Delta	36,50
SK...71L/4 TI 4 - SK 2xxE-750-340-A	50	1360	1,91	230	0,37	0,75	Delta	23,80
SK...80S/4 TI 4 - SK 2xxE-111-340-A	50	1375	2,63	230	0,55	0,73	Delta	15,10
SK...80L/4 TI 4 - SK 2xxE-151-340-A	50	1375	3,64	230	0,75	0,74	Delta	10,20
SK...90S/4 TI 4 - SK 2xxE-221-340-A	50	1385	4,81	230	1,1	0,78	Delta	6,28
SK...90L/4 TI 4 - SK 2xxE-301-340-A	50	1385	6,30	230	1,5	0,80	Delta	4,37
SK...100L/4 TI 4 - SK 2xxE-401-340-A	50	1440	9,03	230	2,2	0,74	Delta	2,43
SK...100LA/4 TI 4 - SK 2xxE-551-340-A	50	1410	12	230	3,0	0,8	Delta	1,81
SK...112M/4 TI 4 - SK 2xxE-751-340-A	50	1445	14,4	230	4,0	0,8	Delta	1,14

Frequency inverter type	Power data at rating point		
	$\mathrm{P}_{\mathrm{B}}[\mathrm{kW}]$	$\mathrm{n}_{\mathrm{B}}\left[\mathrm{min}^{-1}\right]$	$\mathrm{M}_{\mathrm{B}}[\mathrm{Nm}]$
SK..71S/4 TI 4 - SK 2xxE-550-340-A	0,43	2475	1,65
SK...71L/4 TI 4 - SK 2xxE-750-340-A	0,64	2455	2,49
SK...80S/4 TI 4 - SK 2xxE-111-340-A	0,95	2470	3,67
SK...80L/4 TI 4 - SK 2xxE-151-340-A	1,3	2470	5,01
SK...90S/4 TI 4 - SK 2xxE-221-340-A	1,9	2480	7,32
SK...90L/4 TI 4 - SK 2xxE-301-340-A	2,6	2480	10,01
SK...100L/4 TI 4 - SK 2xxE-401-340-A	3,8	2535	14,32
SK...100LA/4 TI 4 - SK 2xxE-551-340-A	5,2	2505	20,1
SK...112M/4 TI 4 - SK 2xxE-751-340-A	6,9	2540	26,1

9.9.3 100 Hz characteristic curve (only 400 V devices)

(\rightarrow Adjustment range 1:20)
For a large speed adjustment range up to a ratio of 1:20 an operating point of $100 \mathrm{~Hz} / 400 \mathrm{~V}$ may be selected. For this, special motor data is necessary (see below), which deviates from the normal 50 Hz data. Care must be taken that a constant torque is produced over the entire adjustment range, however this is smaller than the rated torque for 50 Hz operation.
In addition to the large speed adjustment range, a further benefit is the better temperature characteristic of the motor. In the low output speed range an external fan is not strictly necessary.
NOTE: The following motor data applies for standard motors with $230 / 400 \mathrm{~V}$ windings.

Frequency inverter type	Parameterisation data for frequency inverter							
	$\mathrm{F}_{\mathrm{N}}[\mathrm{Hz}]$	$\begin{gathered} \mathrm{n}_{\mathrm{N}} \\ {\left[\mathrm{~min}^{-1}\right]} \end{gathered}$	$\mathrm{I}_{\mathrm{N}}[\mathrm{A}]$	$\mathrm{U}_{\mathrm{N}}[\mathrm{V}]$	$\mathrm{P}_{\mathrm{N}}[\mathrm{kW}]$	$\cos \varphi$	Circuit	$\mathrm{R}_{\mathrm{st}}[\Omega]$
SK...71S/4 TI 4 -SK 2xxE-550-340-A	100	2855	1,2	400	0,37	0,79	Delta	40,60
SK...71L/4 TI 4 -SK 2xxE-550-340-A	100	2860	1,8	400	0,55	0,75	Delta	22,70
SK...80S/4 TI 4 -SK 2xxE-750-340-A	100	2885	2,4	400	0,75	0,77	Delta	16,20
SK...80L/4 TI 4 - SK 2xxE-111-340-A	100	2900	3,0	400	1,1	0,75	Delta	10,80
SK...90S/4 TI 4 -SK 2xxE-151-340-A	100	2925	3,6	400	1,5	0,74	Delta	6,40
SK...90L/4 TI 4 -SK 2xxE-221-340-A	100	2920	4,9	400	2,2	0,79	Delta	4,67
SK...100L/4 TI 4 - SK 2xxE-301-340-A	100	2940	6,7	400	3	0,77	Delta	2,43
SK...100LA/4 TI 4 -SK 2xxE-401-340-A	100	2935	8,7	400	4	0,8	Delta	1,96
SK...112M/4 TI 4 - SK 2xxE-551-340-A	100	2945	11,4	400	5,5	0,82	Delta	1,2
SK...132S/4 TI 4 -SK 2xxE-751-340-A	100	2955	15,6	400	7,5	0,82	Delta	0,74

Frequency inverter type	Power data at rating point		
	$\mathrm{P}_{\mathrm{B}}[\mathrm{kW}]$	$\mathrm{n}_{\mathrm{B}}\left[\mathrm{min}^{-1}\right]$	$\mathrm{M}_{\mathrm{B}}[\mathrm{Nm}]$
SK...71S/4 TI 4 - SK 2xxE-550-340-A	0,37	2855	1,23
SK...71L/4 TI 4 - SK 2xxE-550-340-A	0,55	2860	1,83
SK...80S/4 TI 4 - SK 2xxE-750-340-A	0,75	2885	2,48
SK...80L/4 TI 4 - SK 2xxE-111-340-A	1,1	2900	3,62
SK...90S/4 TI 4 - SK 2xxE-151-340-A	1,5	2925	4,90
SK...90L/4 TI 4 - SK 2xxE-221-340-A	2,2	2920	7,20
SK...100L/4 TI 4 - SK 2xxE-301-340-A	3,0	2940	9,75
SK...100LA/4 TI 4 - SK 2xxE-401-340-A	4,0	2935	13,0
SK...112M/4 TI 4 - SK 2xxE-551-340-A	5,5	2945	18,0
SK...132S/4 TI 4 - SK 2xxE-751-340-A	7,5	2955	24,3

9.10 Standardisation of setpoint/actual values

The following table contains details for the standardisation of typical setpoint and actual values. This information relates to the parameters (P400), (P418), (P543), (P546), (P740) or (P741).

Name	Analog signal		Bus signal						
Setpoint \{Function\}	Value range	Standardisation	Value range	Max. value	Type	100\% =	$-100 \%=$	Standardisation	$\begin{array}{\|c\|} \text { Limit } \\ \text { absolute } \end{array}$
Setpoint frequency $\{01\}$	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{array}{\|l} \text { P104 ... P105 } \\ (\text { min - max }) \end{array}$	$\pm 100 \%$	16384	INT	$\begin{aligned} & 400 \mathrm{O}_{\text {nex }} \\ & 16384_{\mathrm{dec}} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\text {nex }} \\ & 16385_{\text {dec }} \end{aligned}$	$\begin{aligned} & \hline 4000_{\text {nex }} * \\ & S_{\text {elpoint }}[\mathrm{Hz}] / \mathrm{P} 105 \\ & \hline \end{aligned}$	P105
Frequency addition \{02\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\left.\right\|_{(\text {min - max })} ^{\text {P410 ... P411 }}$	$\pm 200 \%$	32767	INT	$\begin{aligned} & 4000_{\text {nex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\text {nex }} \\ & 16385_{\text {dec }} \end{aligned}$	$\begin{aligned} & 4000_{\text {nex }} * \\ & \mathrm{~S}_{\text {etpoint }}[\mathrm{Hz}] / \mathrm{P} 411 \end{aligned}$	P105
Frequency subtraction \{03\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & \text { P410 ... P411 } \\ & (\min -\max) \end{aligned}$	$\pm 200 \%$	32767	INT	$\begin{aligned} & 4000_{\text {hex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\text {hex }} \\ & 16385_{\mathrm{dec}} \end{aligned}$	$\begin{aligned} & 4000_{\text {nex }} * \\ & \mathrm{~S}_{\text {etpoint }}[\mathrm{Hz}] / \mathrm{P} 411 \end{aligned}$	P105
Minimum frequency \{04\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & 50 \mathrm{~Hz}^{*} \\ & \mathrm{U}_{\mathrm{AIN}}(\mathrm{~V}) / 10 \mathrm{~V} \end{aligned}$	0...200\%	32767	INT	$\begin{aligned} & 4000_{\text {hex }} \\ & 16384_{\text {dec }} \end{aligned}$	1	$\begin{aligned} & 50 \mathrm{~Hz}^{*} \\ & \text { Bus setpoint/4000 } \end{aligned}$	P105
Maximum frequency \{05\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{gathered} 100 \mathrm{~Hz}^{*} \\ \mathrm{U}_{\mathrm{AIN}}(\mathrm{~V}) / 10 \mathrm{~V} \end{gathered}$	0...200\%	32767	INT	$\begin{aligned} & 4000_{\text {hex }} \\ & 16384_{\text {dec }} \end{aligned}$	1	$\begin{aligned} & 100 \mathrm{~Hz}^{*} \\ & \text { Bus setpoint } / 4000_{\text {hex }} \end{aligned}$	P105
Actual value Process controller \{06\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & \text { P105* } \\ & \mathrm{U}_{\text {AIN }}(\mathrm{V}) / 10 \mathrm{~V} \end{aligned}$	$\pm 100 \%$	16384	INT	$\begin{aligned} & 4000_{\text {hex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\mathrm{nex}} \\ & 16385_{\mathrm{dec}} \end{aligned}$	$\begin{aligned} & 4000_{\text {hex }} * \\ & \mathrm{~S}_{\text {etpoint }}[\mathrm{Hz}] / \mathrm{P} 105 \end{aligned}$	P105
Setpoint Process controller \{07\}	$\begin{array}{c\|} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{array}$	$\begin{aligned} & \mathrm{P} 105^{*} \\ & \mathrm{U}_{\mathrm{AIN}}(\mathrm{~V}) / 10 \mathrm{~V} \end{aligned}$	$\pm 100 \%$	16384	INT	$\begin{aligned} & 4000_{\text {nex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\mathrm{hex}} \\ & 16385_{\mathrm{dec}} \end{aligned}$	$\begin{aligned} & 4000_{\text {nex }} * \\ & \mathrm{~S}_{\text {eppoint }}[\mathrm{Hz}] / \mathrm{P} 105 \end{aligned}$	P105
Torque current limit $\{11\},\{12\}$	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & \mathrm{P}_{1122^{*}} \\ & \mathrm{U}_{\mathrm{AIN}}(\mathrm{~V}) / 10 \mathrm{~V} \end{aligned}$	0...100\%	16384	INT	$\begin{aligned} & 4000_{\text {nex }} \\ & 16384_{\text {dec }} \end{aligned}$	1	$4000_{\text {hex }}$ * $1[\mathrm{~A}] / \mathrm{P} 112$	P112
Current limit \{13\}, \{14\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & \text { P536* } \\ & \mathrm{U}_{\text {AIN }}(\mathrm{V}) / 10 \mathrm{~V} \end{aligned}$	0...100\%	16384	INT	$\begin{aligned} & 4000_{\text {hex }} \\ & 16384_{\text {dec }} \end{aligned}$	1	$4000_{\text {hex }}$ * $1[A] / P 536$	P536
Ramp time \{15\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & 10 \mathrm{~S}^{*} \\ & \mathrm{U}_{\mathrm{AIN}}(\mathrm{~V}) / 10 \mathrm{~V} \end{aligned}$	0...200\%	32767	INT	$\begin{aligned} & 4000_{\text {nex }} \\ & 16384_{\text {dec }} \end{aligned}$	1	10s * Bus setpoint/4000 hex	20s
Actual values \{Function\}									
Actual frequency \{01\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & \text { P105* } \\ & \mathrm{U}_{\text {AOut }}(\mathrm{V}) / 10 \mathrm{~V} \end{aligned}$	$\pm 100 \%$	16384	INT	$\begin{aligned} & 4000_{\text {hex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\mathrm{nex}} \\ & 16385_{\mathrm{dec}} \end{aligned}$	$\begin{aligned} & 400 \mathrm{o}_{\text {nex }} * \\ & \mathrm{f}[\mathrm{~Hz}] / \mathrm{P} 105 \end{aligned}$	
Speed \{02\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\mathrm{P} 202^{*}$ $\mathrm{U}_{\text {Aout }}(\mathrm{V}) / 10 \mathrm{~V}$	$\pm 200 \%$	32767	INT	$\begin{aligned} & 4000_{\text {nex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C000} \mathrm{onx}_{\text {ne }} \\ & 16385_{\text {dec }} \end{aligned}$	$\begin{gathered} 4000_{\text {nex }} * \\ \text { n[rpm]/P202 } \end{gathered}$	
Current $\{03\}$	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & \text { P203* } \\ & \mathrm{U}_{\text {Aout }}(\mathrm{V}) / 10 \mathrm{~V} \end{aligned}$	$\pm 200 \%$	32767	INT	$\begin{aligned} & 4000_{\text {nex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\text {nex }} \\ & 16385_{\text {dec }} \end{aligned}$	$\begin{aligned} & 400 \mathrm{n}_{\text {nex }} \text { * } \\ & \mathrm{f}[\mathrm{~Hz}] / \mathrm{P} 105 \end{aligned}$	
Torque current \{04\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & \mathrm{P} 112^{\star} 100 / \\ & \sqrt{\left((\mathrm{P} 203)^{2}-(\mathrm{P} 209)^{2}\right)^{\star}} \\ & U_{\text {Aour }}(\mathrm{V}) / 10 \mathrm{~V} \end{aligned}$	$\pm 200 \%$	32767	INT	$\begin{aligned} & 4000_{\text {nex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\text {nex }} \\ & 16385_{\mathrm{dec}} \end{aligned}$	$\begin{aligned} & 4000_{\text {nex }} * \\ & \lg [\mathrm{~A}] /(\mathrm{P} 112) * 100 / \\ & \sqrt{\left.(\text { P203 })^{2}-(\mathrm{P} 209)^{2}\right)} \end{aligned}$	
Master value setpoint frequency \{19\} ... \{21\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$	$\begin{aligned} & \text { P105* } \\ & \mathrm{U}_{\text {Aout }}(\mathrm{V}) / 10 \mathrm{~V} \end{aligned}$	$\pm 100 \%$	16384	INT	$\begin{aligned} & 4000_{\text {nex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\text {nex }} \\ & 16385_{\text {dec }} \end{aligned}$	4000 ${ }_{\text {nex }}$ * f[Hz]/P105	
Speed from speed encoder \{22\}	$\begin{gathered} 0-10 \mathrm{~V} \\ (10 \mathrm{~V}=100 \%) \end{gathered}$		$\pm 100 \%$	16384	INT	$\begin{aligned} & 4000_{\text {hex }} \\ & 16384_{\text {dec }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 000_{\text {hex }} \\ & 16385_{\mathrm{dec}} \end{aligned}$	$\begin{aligned} & 400 \mathrm{nex}_{\text {* }} \mathrm{n}[\mathrm{rpm}] / \\ & \mathrm{P} 201 /(60 / \text { /number of } \\ & \text { pole pairs }) \end{aligned}$	

9.11 Maintenance and servicing information

In normal use, NORDAC SK 200E frequency inverters are maintenance free. Please note the "general data" in Section 8.1.
If the frequency converter is being used in a dusty environment, then the cooling-vane surfaces should be regularly cleaned with compressed air. If air intake filters have been built into the control cabinet, then these should also be regularly cleaned or replaced.
If you contact our technical support, please have the precise device type (rating plate/display), accessories and/or options, the software version used (P707) and the series number (rating plate) at hand.

Repairs

The device must be sent to the following address if it needs repairing:

NORD Electronic DRIVESYSTEMS GmbH

Tjüchkampstraße 37
26605 Aurich, Germany

For queries about repairs, please contact:

Getriebebau NORD GmbH \& Co. KG

Tel.: 04532 / 401-515
Fax: 04532 / 401-555

If a frequency inverter is sent in for repair, no liability can be accepted for any added components, e.g. such as mains cables, potentiometer, external displays, etc.!

Please remove all non-original parts from the frequency inverter.

Internet information

You can also find the comprehensive manuals in German and in English on our Internet site.

> www.nord.com

9.12 Abbreviations in this Manual

AS (AS1)	AS Interface
BR	Brake resistor
EEPROM	Non-volatile memory
EMC	Electromagnetic compatibility
FI	Frequency inverter
FI-(switch)	Leakage current circuit breaker

I/OIn-/ Out (Input / Output)
ISD........ Field current (current vector control)
LED.......Light-emitting diode
SSupervisor parameter, P003
SH......... "Safe Stop" function
SW Software version, P707

10 Keyword index

3
3-Wire-Control 169
A
Accessories 11
Actual bus values 184
Actual values 256
Adapter cable RJ12 46
Adapter unit 62
Adapter Unit SK TI4-TU- 82
Additional parameters 176
Address 257
Addressing 74
Adjustment range 1/10 252
Adjustment range 1/17 254
Adjustment range $1 / 20$ 255
Array parameters 109, 116, 140,141
AS Interface 45, 127, 129, 132
ATEX Zone 22, Cat. 3D 48, 55
Automatic flux adaptation 251
Automatic start 170
B
Basic parameters frequency inverter 144
SK xU4 -IOE 198
Brake chopper 29, 39
Brake coil voltage 45
Brake release time 149
Brake resistor 29, 39, 231
Braking control 146, 149
Broadcast 75
BUS Adapter Unit SK TI4-TU-... 82
Bus I/O In Bits 174
Bus I/O Out Bits 174
Bus setpoints 185
Bus structure of the AS interface 133
C
Cable cross-section 38, 39
Cable gland 62
Calibration AOUT 198
CE 14
CE mark 243
Characteristic curve setting 151,
152, 154
Charging error 227
Commissioning 122
Configuration 64, 72
Control 108
Control connection
Extension SK xU4- 64
Frequency inverter. 42
SK CU4- 65
SK CU4-CAO 78
SK CU4-DEV. 80
SK CU4-IOE 70
SK CU4-PBR 76
SK CU4-POT. 68
SK TI4-TU-NET 83
SK TU4-CAO 96
SK TU4-DEV 100
SK TU4-IOE 87
SK TU4-PBR 92
Control parameters 156
Control terminals 43, 159
Control voltages 42
Convection 24
CSA Filter 32
C-Tick 15
cUL 14, 237
Current vector control 154
Customer Unit 56, 57, 65
D
DC brake 147
Derating 245
Diagnostic LEDs 127
Digital functions 167
Digital inputs 167
Dimensions 27, 28, 62
DIP switch 64
DIP switches 125
Direct current braking 147
Display. 104
Display and control 216
Distance calculator 147
DS standard motor. 150
Dynamic braking 29
E
EC declaration of conformity 243
EEC-Directive EEC/89/336 243
EEPROM 187
Electrical connection. 36
Electrical data
1~115V 231
1~230V 232
3~230V 233
3~400V 235
UL. 237
Electro-mechanical brake 40
EMC 243
EMC Directive 14
EMC standard 243
Emission of interference 244
EN 61000 244
EN 61800-3 244
Energy efficiency 251
Energy saving function 153
Error messages 216, 217
Excitation 153
Expansion module 11
F
Factory setting 130
Faults. 216, 217
Features 10
FI circuit breaker 12, 249
Functional earth 64
H
HTL encoder 47

Messages 216
Minimal configuration 122
Modulation depth 153
Motor cable length. 39
Motor data 130, 150, 252
Motor list 150
Motor mounted 27
Motor Temperature 131
Motor type 9
Mounting the SK 200E 22
Multiple motor operation 39
0
Operating displays 142
Operating mode 231
Operating status 216
Operating time 191
Operation 104
Option (mounting) locations 25
Optional ATEX modules 49
Options 56
Oscillation damping 153
Outdoor installation 55
Output monitoring 182
Overcurrent 218, 225
Overtemperature 217, 225
Overvoltage 218
Overvoltage switch-off 29
P
Parameter identification 155
Parameter loss 219
Parameter overview 202
Parameter set 144
ParameterBox 104
error messages 119
operation 111
parameters 117
Parameterisation 109, 139
frequency inverter 140
I/O extension 198
PI process controller 241
Posicon 188
Positioning 188
Potentiometer 42
Potentiometers P1 and P2. 127
Power limit 245
Power rating / Motor size. 26
Power-up cycles 228
Process controller..... 159, 173, 241
Protection class 23
Pulse frequency 177
Pulse switch-off 181, 182
Q
Queries 257
Quick commissioning 123
R
Rating point 100 Hz 255
Rating point 50 Hz 252
Rating point 87Hz 254
Reduced output power 245
Reduction of output power. 245
Reference voltage 42
Repairs 257
RJ12. 46
RoHS compliance 15
Rotary encoder 47
Rotation direction 183
Rounding 145
S
Safety information 3
Service 257
Setpoint processing 240
Setpoint values 256
Signal status LEDs 73
SimpleBox 104, 106
SK ATX-POT. 50
SK BRE4- 30, 31
SK BRI4- 29, 31
SK CSX-3H 106
SK CU4- 65
SK CU4-IOE 70
SK PAR-3H 111
SK TIE4-WMK- 28
SK TU4- 82
SK TU4-IOE 87
$\left.\begin{array}{lll}\text { Slip compensation.................. } 152 & \text { CSA filter } 34 & \text { USS Time Out } 220\end{array}\right]$

Intelligent Drivesystems, Worldwide Services

Getriebebau NORD GmbH \& Co. KG
Rudolf-Diesel-Str. 1
D - 22941 Bargteheide
Fon +49 (0) $4532 / 401-0$
Fax +49 (0) 4532/401-253
info@nord.com
www.nord.com

The Nordac SK 200E is available to order from:

www.inverterdrive.com

[^0]: NOTE

 With the use of internal resistors, the DIP switch 8 must be set to "On". This is important in order to activate a limitation of the peak power of the brake resistor. Otherwise, the brake resistor may be damaged during operation.
 Alternatively, a suitable power limit can also be set in P555, P556 and P557. However, this is only effective if DIP 8 is set to the "Off" position.

[^1]: Ư, Küchenmeister
 General Manager

[^2]: By proxy F Wiedemann Technical Manager Inverters

[^3]: WARNING
 .
 Modules must not be inserted or removed unless the device is free of voltage.

[^4]: ${ }^{1}$ In systems, electrical equipment is usually connected to the functional earth. This serves to conduct leakage and interference currents in order to ensure the EMC characteristics and must be connected in compliance with high-frequency methods.

[^5]: NOTE

 For controlling the frequency inverter via In/Out bits (e.g.: AS-i, DIG In 1-4) typical values are preset in the relevant parameters (P480) and (P481). (Details: Section 6)
 These settings apply to both control via AS-i bits and BUS I/O bits.

[^6]: Explanation: See table above

 ## Note:

 The functions of potentiometers P1 and P2 correspond to those of devices without an AS interface (see table above).
 With DIP switches 5 and 4 in the OFF position (default setting), the digital inputs are also active. The functions then correspond to those of devices without an AS interface (table above). In all other DIP switch combinations the functions of the digital inputs are deactivated.
 ASi OUT1 and ASi OUT2 loop the signal level (High / Low) of digital inputs 1 and 2.

[^7]: *** These settings are dependent on the nominal power of the FI or the selection in parameter P200.

[^8]: * These settings are dependent on the nominal power of the FI or the selection in parameter P200.
 ${ }^{2}$ Note: P211 and P212 can be deactivated with the DIP switches, see Section 5.1.1

[^9]: ${ }^{3}$ Note: P211 and P212 can be deactivated with the DIP switches, see Section 5.1.1

[^10]: ${ }^{4}$ The assignment of the dig. inputs for P543 $=5$

[^11]: 1 = Internal bus module (SK CU4-...)
 2 = External bus module (SK CU4-...)
 3 = BUS Technology Unit via SPI

[^12]: * the same data apply for the use of the 115 V version of the SK2xxE

