Frequency Inverter

CFW-11

User's Manual

四

FREQUENCY

INVERTER

MANUAL

Series: CFW-11

Language: English

Document: 10000784107 / 08

Models: 242... 1141 A / 380... 480 V

Models with Special DC Hardware: 242... 1141 A / 380... 480 V

The information below describes the revisions made in this manual.

Version	Revision	Description
-	R01	First edition
-	R02	Correction of Table 8.1 on page 8-2
-	R03	General revision
-	R04	It was added: The Safety Stop function Modifications of Slot 4 and Slot 5 New accessory models New models of recommended fuses Inclusion of frame size H General revision
	R05	General revision
-	R06	Table 3.2 on page 3-13 and Figure 8.1 on page 8-4 updated Item 3.2.2 Power/Grounding Wiring and Fuses on page 3-12 and Section 3.3 SAFETY STOP FUNCTION on page 3-38 updated General revision
-	R07	General revision
-	R08	Figure 2.1 on page 2-7 and Figure 2.2 on page 2-8 updated
-		

1 SAFETY INSTRUCTIONS 1-1
1.1 SAFETY WARNINGS IN THE MANUAL 1-1
1.2 SAFETY WARNINGS IN THE PRODUCT. 1-1
1.3 PRELIMINARY RECOMMENDATIONS 1-2
2 GENERAL INFORMATION 2-1
2.1 ABOUT THE MANUAL 2-1
2.2 TERMS AND DEFINITIONS USED IN THE MANUAL 2-2
2.3 ABOUT THE CFW-1 1 2-5
2.4 CFW-11 IDENTIFICATION LABELS 2-12
2.5 HOW TO SPECIFY THE CFW-11 MODEL (SMART CODE) 2-14
2.6 RECEIVING AND STORAGE 2-15
3 INSTALLATION AND CONNECTION 3-1
3.1 MECHANICAL INSTALLATION 3-1
3.1.1 Environmental Conditions 3-1
3.1.2 Positioning and Mounting 3-2
3.1.3 Cabinet Mounting 3-5
3.1.4 Access to the Control and Power Terminals 3-6
3.1.5 HMI Installation at the Cabinet Door or Command Panel (Remote HMI) 3-7
3.2 ELECTRICAL INSTALLATION 3-8
3.2.1 Identification of the Power and Grounding Terminals 3-8
3.2.2 Power/Grounding Wiring and Fuses 3-12
3.2.3 Power Connections 3-19
3.2.3.1 Input Connections 3-22
3.2.3.1.1 Power Supply Capacity 3-23
3.2.3.1.2 IT Networks 3-23
3.2.3.1.3 Command Fuses of Pre-charge Circuit. 3-24
3.2.3.2 Dynamic Braking 3-24
3.2.3.3 Output Connections 3-26
3.2.4 Grounding Connections 3-28
3.2.5 Control Connections 3-30
3.2.6 Typical Control Connections 3-35
3.3 SAFETY STOP FUNCTION 3-38
3.4 INSTALLATION ACCORDING TO THE EUROPEAN DIRECTIVE OF ELECTROMAGNETIC COMPATIBILITY 3-38
3.4.1 Conformal Installation 3-39
3.4.2 Standard Definitions 3-39
3.4.3 Emission and Immunity Levels 3-40
4 HMI 4-1
4.1 INTEGRAL KEYPAD - HMI-CFW-1 1 4-1
4.2 PARAMETER STRUCTURE 4-4
5 FIRST TIME POWER-UP AND START-UP 5-1
5.1 START-UP PREPARATION 5-1
5.2 START-UP 5-2
5.2.1 P0000 Password Setting 5-3
5.2.2 Oriented Start-Up 5-3
5.2.3 Basic Application Parameter Settings 5-5
5.3 DATE AND TIME SETTING 5-9
5.4 BLOCKING PARAMETERS MODIFICATION 5-10
5.5 HOW TO CONNECT A PC 5-10
5.6 FLASH MEMORY MODULE. 5-11
6 TROUBLESHOOTING AND MAINTENANCE 6-1
6.1 OPERATION OF FAULTS AND ALARMS 6-1
6.2 FAULTS, ALARMS, AND POSSIBLE CAUSES 6-2
6.3 SOLUTIONS FOR THE MOST FREQUENT PROBLEMS 6-8
6.4 INFORMATION NECESSARY FOR CONTACTING TECHNICAL SUPPORT 6-8
6.5 PREVENTIVE MAINTENANCE 6-9
6.5.1 Cleaning Instructions 6-10
7 OPTION KITS AND ACCESSORIES 7-1
7.1 OPTION KITS 7-1
7.1.1 Safety Stop Function 7-1
7.1.2 24 Vdc External Control Power Supply 7-1
7.2 ACCESSORIES 7-2
7.2.1 Use of External Dynamic Braking Module DBW03 and DBW04 7-4
7.2.1 Use of External Dynamic Braking Module DBW03 and DBW04 7-4
8 TECHNICAL SPECIFICATIONS 8-1
8.1 POWER DATA 8-1
8.2 ELECTRONICS/GENERAL DATA 8-6
8.3 CODES AND STANDARDS 8-7
8.4 CERTIFICATIONS. 8-7
8.5 MECHANICAL DATA 8-8

1 SAFETY INSTRUCTIONS

This manual provides information for the proper installation and operation of the CFW- 11 frequency inverter.

Only trained and qualified personnel should attempt to install, start-up, and troubleshoot this type of equipment.

1.1 SAFETY WARNINGS IN THE MANUAL

The following safety warnings are used in this manual:

DANGER!

The procedures recommended in this warning have the purpose of protecting the user against dead, serious injuries and considerable material damage.

DANGER!

Les procédures concernées par cet avertissement ont destinées à protéger l'utilisateur contra de dangers mortels, de blessures et de détériorations matérielles importantes.

ATTENTION!

The procedures recommended in this warning have the purpose of avoiding material damage.

NOTE!

The text intents to supply important information for the correct understanding and good operation of the product.

1.2 SAFETY WARNINGS IN THE PRODUCT

The following symbols are attached to the product and require special attention:

High voltages are present.

Components sensitive to electrostatic discharge.
Do not touch them.

Mandatory connection to the protective ground (PE).

Connection of the shield to the ground.

Hot surface.

1.3 PRELIMINARY RECOMMENDATIONS

DANGER!

Only qualified personnel familiar with the CFW-11 frequency inverter and associated equipment should plan or implement the installation, start-up and subsequent maintenance of this equipment. These personnel must follow all the safety instructions included in this manual and/or defined by local regulations.
Failure to comply with these instructions may result in death, serious injury, and equipment damage.

DANGER!

Seulement personnes avec la qualification adéquate et familiarisation avec le CFW-1 1 et équipements associés doivent planifiquer ou implementer l'installation, mise en marche, operation et entretien de cet équipement.

Cettes personnes doivent suivre toutes les instructions de sécurités indiquées dans ce manuel, et/ou définies par normes locales.
L'inobservance des instructions de sécurité peut résulter en risque de vie et/ou dommages de cet équipement.

NOTE!

For the purposes of this manual, qualified personnel are those trained and able to:

1. Install, ground, power-up and operate the CFW-11 according to this manual and the effective legal safety procedures.
2. Use protection equipment according to the established regulations.
3. Provide first aid.

DANGER!

Always disconnect the main power supply before touching any electrical component associated to the inverter.

Several components can remain charged with high voltages or remain in movement (fans) even after the AC power is disconnected or switched off.

Wait for at least ten minutes so as to ensure the full discharge of the capacitors.
Always connect the equipment frame to the protection earth (PE) at the suitable connection point.

DANGER!

Débranchez toujours l'alimentation principale avant d'entrer en contact avec un appareil électrique associé au variateur.
Plusieurs composants peuvent rester chargés à un potentiel électrique élevé et/ou être en mouvement (ventilateurs), même après la déconnexion ou la coupure de l'alimentation en courant alternatif. Attendez au moins 10 minutes que les condensateurs se déchargent complètement. Raccordez toujours la masse de l'appareil à une terre protectrice (PE).

ATTENTION!

Electronic boards have components sensitive to electrostatic discharges. Do not touch directly on components or connectors. If necessary, touch the grounded metallic frame before or use an adequate grounded wrist strap.

Do not perform any withstand voltage test (hi-pot test)! If necessary, consult WEG.

NOTE!

Frequency inverter may interfere with other electronic equipment. In order to reduce these effects, take the precautions recommended in the Chapter 3 INSTALLATION AND CONNECTION on page 3-1.

NOTE!

Read the user manual completely before installing or operating the inverter.

DANGER!

Crushing hazard

In order to ensure safety in load lifting applications, electric and/or mechanical devices must be installed outside the inverter for protection against accidental fall of load.

DANGER!

This product was not designed to be used as a safety element. Additional measures must be taken so as to avoid material and personal damages.
The product was manufactured under strict quality control, however, if installed in systems where its failure causes risks of material or personal damages, additional external safety devices must ensure a safety condition in case of a product failure, preventing accidents.

DANGER!

Risque d'écrasement

Afin d'assurer la sécurité dans les applications de levage de charges, les équipements électriques et/ ou mécaniques doivent être installés hors du variateur pour éviter une chute accidentelle des charges.

DANGER!

Ce produit n'est pas conçu pour être utilisé comme un élément de sécurité. Des précautions supplémentaires doivent être prises afin d'éviter des dommages matériels ou corporels.

Ce produit a été fabriqué sous un contrôle de qualité conséquent, mais s'il est installé sur des systèmes où son dysfonctionnement entraîne des risques de dommages matériels ou corporels, alors des dispositifs de sécurité externes supplémentaires doivent assurer des conditions de sécurité en cas de défaillance du produit, afin d'éviter des accidents.

ATTENTION!

When in operation, electric energy systems - such as transformers, converters, motors and cables - generate electromagnetic fields (EMF), posing a risk to people with pacemakers or implants who stay in close proximity to them. Therefore, those people must stay at least 2 meters away from such equipment.

2 GENERAL INFORMATION

2.1 ABOUT THE MANUAL

This manual exposes how to install, to start-up in V/f (scalar) mode, the main characteristics and shows how to troubleshoot the most common problems of the CFW-11 inverter series frame sizes F, G and H models.

It is also possible to operate the CFW- 11 in VVW, Sensorless Vector and Vector with Encoder modes. For more details on the start-up in the other control modes, refer to the programming manual.

ATTENTION!

The operation of this equipment requires installation instructions and detailed operation provided in the user manual, programming manual and manuals/guides for kits and accessories.
The user's manual and the parameters quick reference are supplied in a hard copy together with the inverter.
The user guides are also provided in a hard copy along with the kit/accessories.
The other manuals are available at www.weg.net.
A printed copy of the files available on WEG's website can be requested at your local WEG dealer.

For information on other functions, accessories and operation conditions, consult the following manuals:

■ Programming manual, with a detailed description of the CFW-11 parameters and advanced functions.

■ Incremental Encoder Interface module manual.

■
I/O Expansion module manual.

■ RS-232/RS-485 serial communication manual.

- CANopen Slave communication manual.
- Anybus-CC communication manual.

凹 Manual of DeviceNet communication.

■ Manual of Ethercat communication.

凹 Manual of Profibus communication.

■ Manual of Symbinet communication.

■ Manual of the SoftPLC.

These manuals available at site www.weg.net.

2.2 TERMS AND DEFINITIONS USED IN THE MANUAL

Normal Duty Cycle (ND): inverter duty that defines the maximum current values for continuous duty $I_{\text {nom-ND }}$ and an overload of 110% during 1 minute. It is selected by programming P0298 (Application) $=0$ (Normal Duty (ND)). It must be used for driving motors that are not subject in that application to high torques with respect to their rated torque, when operating at constant speed, during start, acceleration or deceleration.
$I_{\text {nom-ND }}$: inverter rated current for use with normal duty cycle (ND $=$ Normal Duty).
Overload: $1,1 \times I_{\text {nom-ND }} / 1$ minute.

Heavy Duty Cycle (HD): inverter duty that defines the maximum current values for continuous duty $\mathrm{I}_{\text {nom-HD }}$ and an overload of 150% during 1 minute. It is selected by programming P0298 (Application) $=1$ (Heavy Duty - HD). It must be used for driving motors that are subject in that application to high torques with respect to their rated torque, when operating at constant speed, during start, acceleration or deceleration.
$I_{\text {nom-HD }}$: inverter rated current for use with heavy duty cycle (HD = Heavy Duty).

Rectifier: the input circuit of the inverters that converts the input $A C$ voltage into $D C$, it is made of thyristors and power diodes.

Pre-charge circuit: it charges the DC link capacitors with a limited current, thus avoiding higher current peaks when powering the inverter.

DC Link: inverter intermediate circuit; DC voltage obtained from the rectification of the $A C$ input voltage or from an external power supply. It feeds the inverter output IGBT bridge.

U, V and W Arms: set of two IGBTs forming the inverter output phases U, V and W .

IGBT: "Insulated Gate Bipolar Transistor"; it is the output inverter bridge basic component, working as an electronic switch either in the saturated (closed switch) or in the cut off mode (open switch).

Braking IGBT: it works as a switch to activate the braking resistances; it is controlled by the voltage level on the DC link.

Gate Driver: circuit used turn the IGBTs on and off.

PWM: "Pulse Width Modulation". A pulsed voltage that feeds the motor.

Switching Frequency: switching frequency of the IGBTs of the inverter bridge, normally expressed in kHz . Also known as carrier frequency.

Heatsink: it is a metal part designed for dissipating the heat generated by the power semiconductors.

PE: Protective Ground.

Varistor: Metal Oxide Varistor.

RFI Filter: "Radio Frequency Interference filter". A filter that avoids interference in the radiofrequency range.

PTC: it is a resistor, whose resistance value in ohms increases proportionally to the temperature increase, being used as temperature sensor in motors.

NTC: it is a resistor, whose resistance value in ohms decreases proportionally to the temperature increase, being used as temperature sensor in power modules.

HMI: "Human-Machine Interface" it is the device that allows the control of the motor, the visualization and the modification of the inverter parameters. The CFW-11 HMI presents keys for commanding the motor, navigation keys and a graphic LCD display.

Flash Memory: it is the nonvolatile memory that can be electrically written and erased.

RAM Memory: Random Access Memory (volatile).

USB: "Universal Serial Bus"; it is a serial bus standard that allows devices to be connected using the "Plug and Play" concept.

General Enable: when activated, it accelerates the motor via acceleration ramp. When deactivated, this function immediately blocks the PWM pulses. The general enable function can be controlled through a digital input programmed for this function or via serial communication.

Run/Stop: Inverter function that when activated (Run) accelerates the motor with the acceleration ramp until reaching the speed reference, and when deactivated (Stop) decelerates the motor with the deceleration ramp down to stop. It can be commanded through a digital input programmed for that function or via serial communication. The HMI keys (1) (Run) and (Stop) work in a similar manner.

STO: safety function available as an option in the line of CFW- 11 inverters.
When the STO function is enabled, the inverter ensures that no motion of the motor shaft will occur. It is also referred to as Safety Stop in the documentation of the CFW-11.

PLC: Programmable Logic Controller.

TBD: value to be defined.

AC: Alternating Current.

DC: Direct Current.

Amp, A: ampères.
${ }^{\circ} \mathrm{C}$: Celsius degree.

CFM: "Cubic feet per minute"; It is a flow measurement unit.
cm: centimeter.
${ }^{\circ} \mathrm{F}$: Fahrenheit degree.

Hz: hertz.

CV: "cheval-vapeur" $=736$ Watts; Power measurement unit, normally used to indicate the mechanical power of electric motors.
ft: Foot.
hp: "Horse Power" = 746 Watts; Power measurement unit, normally used to indicate the mechanical power of electric motors.
in: Inch
$\mathrm{kg}:$ Kilogram $=1000$ grams.
kHz: Kilohertz = 1000 Hertz.
l/s: liters per second.
lb: pound.
m : meter.
mA : miliampère $=0.001$ Ampère
min: minute
mm : millimeter.
ms: Millisecond $=0.001$ seconds.
N.M.: Newton meter; torque measurement unit.
rms: "Root mean square"; Effective value.
rpm: "Revolutions per minute"; Speed measurement unit.
s: second

V: volts.
Ω : ohms.

2.3 ABOUT THE CFW-11

The CFW-11 is a high performance variable frequency drive that makes it possible the control of speed and torque of three-phase AC induction motors. The central characteristic of this product is the "Vectrue" technology, which presents the following advantages:

■ (V/f), V VW or vector control programmable in the same product.

- The vector control can be programmed as "sensorless" (which means standard motors, without the need of encoder) or vector control with motor encoder.
$\boxed{\square}$ The "sensorless" vector control allows high torque and fast response, even at very slow speeds or during starting.
- The "vector control with encoder" allows very high speed accuracy and control for the entire speed range (speed control down to 0 rpm).
\square The "Optimal Braking" function for the vector control allows a controlled motor braking, eliminating in some applications the braking resistor.
- The vector control "Self-Tuning" function allows the automatic setting of the regulators and control parameters, from the identification (also automatic) of the motor and load parameters.

${ }^{(*)}$ The capacitor of RFI filter and MOV connected to the ground must be disconnected with IT network, high impedance grounding network and corner--grounded delta networks. Refer to Item 3.2.3.1.2 IT Networks on page 3-23.
$\left(^{* *)}\right.$ The terminals for DC connection can be used for DC power supply or for the connection of the braking module.
(a) Frame sizes F and G standard models with AC power supply

(b) Models with DC power supply (special DC hardware)

Figure 2.1 - (a) and (b) Block diagram for the CFW-1 1 - frame sizes F and G

 -grounded delta networks. Refer to Item 3.2.3.1.2 IT Networks on page 3-23.
$\left(^{* *)}\right.$ The terminals for $D C$ connection can be used for $D C$ power supply or for the connection of the braking module.
Figure 2.2 - Block diagram of CFW-11 standard models frame size H with AC current

Figure 2.3-Block diagram of CFW-11 standard models frame size H (special DC hardware)

A - HMI
B - control rack cover
C - CC11 control board
D - FLASH memory module MMF-03
E - control accessory module
F - Anybus-CC accessory module
G - bottom front cover
H - heatsink fan
I - mounting supports (for surface mounting)
J - hoisting eye
K - rear part of the inverter (external part for flange mounting)
L - SRB3 safety stop board
Figure 2.4-CFW-11 main components - frame sizes F and G

A - keypad
B - control rack cover
C - CC1 1 control board
D - FLASH memory module MMF-03
E - control acessory module
F - Anybus-CC acessory module
G - bottom front cover
H - heatsink fan
I - mounting supports (for surface mounting)

- hoisting eye

K - rear part of the inverter (external part for flange mounting)
L - SRB3 safety stop board
M - shield for the control cables
Figure 2.5-CFW-11 main components - frame size HUSB connector
(2) USB LED

Off: without USB connection
On/blinking: USB communication active
(3) Status LED

Green: normal operation without fault or alarm
Yellow: in the alarm condition

Blinking red: in the fault condition
Figure 2.6-LEDs and USB connector

2.4 CFW-11 IDENTIFICATION LABELS

There are two identification labels, one complete nameplate is affixed at the side of the inverter and a simplified label is located under the keypad. The label under the keypad allows the identification of the most important characteristics of the inverter even if they are mounted side-by-side.

(b) Label located under the keypad

Figure 2.7 - (a) and (b) - Identification labels

Figure 2.8 - Location of the identification labels

		Inverter Model					Available Option Kits (installed in the product at the factory)								
		Refer to the frame sizes F, G and H CFW- 11 model list in the Chapter 8 TECHNICAL SPECIFICATIONS on page 8-1, where the technical specifications of the inverters are also presented inversores					Refer to Chapter 8 TECHNICAL SPECIFICATIONS on page 8-1 to check option kit availability for each inverter model								
Example	BR	CFW-11	0242	T	4	S									Z
Field description	Market identification (defines the manual language and the factory settings)	WEG CFW- 11 frequency inverter series	Rated output current for use with the Normal Duty (ND) cycle	Number of power phases	Power supply voltage	Option kit	Enclosure protection degree	Keypad	Braking	RFI filter	Safety stop	External 24 Vdc control power supply	Special hardware	Special software	Character that identifies the code end
Available options	2 characters		$\begin{aligned} & 0242=211 \mathrm{~A}(\mathrm{HD}) / \\ & 242 \mathrm{~A}(\mathrm{ND}) \\ & 0312=242 \mathrm{~A}(\mathrm{HD}) / \\ & 312 \mathrm{~A}(\mathrm{ND}) \\ & 0370=312 \mathrm{~A}(\mathrm{HD}) / \\ & 370 \mathrm{~A}(\mathrm{ND}) \\ & 0477=370 \mathrm{~A}(\mathrm{HD}) / \\ & 477 \mathrm{~A}(\mathrm{ND}) \\ & 0515=477 \mathrm{~A}(\mathrm{HD}) / \\ & 515 \mathrm{~A}(\mathrm{ND}) \\ & 0601=515 \mathrm{~A}(\mathrm{HD}) / \\ & 601 \mathrm{~A} \text { (ND) } \\ & 0720=560 \mathrm{~A}(\mathrm{HD}) / \\ & 720 \mathrm{~A}(\mathrm{ND}) \\ & 0760=600 \mathrm{~A}(\mathrm{HD}) / \\ & 760 \mathrm{~A} \text { (ND) } \\ & 0795=637 \mathrm{~A}(\mathrm{HD}) / \\ & 795 \mathrm{~A} \text { (ND) } \\ & 0877=715 \mathrm{~A}(\mathrm{HD}) / \\ & 877 \mathrm{~A} \text { (ND) } \\ & 1062=855 \mathrm{~A}(\mathrm{HD}) / \\ & 1062 \mathrm{~A}(\mathrm{ND}) \\ & 1141=943 \mathrm{~A}(\mathrm{HD}) / \\ & 1141 \mathrm{~A}(\mathrm{ND}) \end{aligned}$	$T=$ threephase power supply	$\begin{aligned} & 4= \\ & 380 \ldots 480 \mathrm{~V} \end{aligned}$	$S=$ standard product $\mathrm{O}=$ product with option kit	Blank = standard (IP20) \|P00 = Special hardware (DC)	Blank = standard keypad IC = no keypad (blind cover)	Blank = standard (no braking IGBT)	Blank = standard (with internal RFI filter)	Blank = standard (safety stop function is not available) $Y=$ with safety stop function	Blank = standard (not available) W = with external 24 Vdc control power supply	Blank = standard DC = feeding with DC $\mathrm{H} 1=$ special hardware \# 1	Blank = standard S1 = special software nr. 1	

2.6 RECEIVING AND STORAGE

The CFW-11 inverters from the frame sizes F, G and H models are supplied packed in wooden boxes.

There is an identification label affixed to the outside of the package, identical to the one affixed to the side of the inverter CFW-11.

To open the package:

1. Remove the package front cover.
2. Take out the polystyrene foam protection.

Verify whether:

1. The CFW- 11 nameplate corresponds to the purchased model.
2. Any damage occurred during transportation.

If any problems are detected, contact the carrier immediately.

If the CFW-1 1 is not installed soon, store it in a clean and dry location (temperature between $-25^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ $\left(-13^{\circ} \mathrm{F}\right.$ and $\left.\left.140^{\circ} \mathrm{F}\right)\right)$, with a cover to prevent dust accumulation inside it.

ATTENTION!

When the inverter is stored for a long period, it becomes necessary to perform the capacitor reforming. Refer to the procedure in the Section 6.5 PREVENTIVE MAINTENANCE on page 6-9 on Table 6.3 on page 6-9.

3 INSTALLATION AND CONNECTION

This chapter describes the CFW-11 electrical and mechanical installation procedures. The guidelines and suggestions must be followed aiming personnel and equipment safety, as well as the proper operation of the inverter.

3.1 MECHANICAL INSTALLATION

3.1.1 Environmental Conditions

NOTE!

The inverter is designed for indoor use only.

Avoid:

Direct exposure to sunlight, rain, high humidity, or sea-air.

- Inflammable or corrosive gases or liquids.

■ Excessive vibration.

■ Dust, metallic particles, and oil mist.

Environment conditions for the operation of the inverter:

- Temperature (standard conditions (measured around the inverter), no frost allowed):
$-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ for frame sizes F and G (except models 720 A and 760 A$)$.
$-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ for frame sizes G (only models 720 A and 760 A$)$ and H .

च From $40^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.$ to $113^{\circ} \mathrm{F}$) for frame size G (only model 720 A$)$: 2% of current derating for each Celsius degree above maximum temperature as specified in item above.

From $40^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.$ to $113^{\circ} \mathrm{F}$) for frame sizes G (only model 760 A$)$ and $\mathrm{H}: 1 \%$ of current derating for each Celsius degree above maximum temperature as specified in item above.

From $45^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ for frame sizes F, G and $\mathrm{H}: 2 \%$ of current derating for each Celsius degree above maximum temperature as specified in item above.

■ Maximum altitude: up to $1000 \mathrm{~m}(3.300 \mathrm{ft})$ - rated conditions.

From 1000 m to $4000 \mathrm{~m}(3.300 \mathrm{ft}$ to 13.200 ft$)$ - 1% of current derating for each $100 \mathrm{~m}(330 \mathrm{ft})$ (or 0.3% each 100 ft) above $1000 \mathrm{~m}(3.300 \mathrm{ft})$ altitude.

From 2000 m to $4000 \mathrm{~m}(6.600 \mathrm{ft}$ to 13.200 ft$)$ above sea level - derating of maximum voltage of 1.1% for each $100 \mathrm{~m}(330 \mathrm{ft})$ above $2000 \mathrm{~m}(6.600 \mathrm{ft})$.

- Humidity: from 5 \% to 95 \% non-condensing.
- Pollution degree: 2 (according to EN50178 and UL508C) with non-conductive pollution. Condensation shall not originate conduction through the accumulated residues.

3.1.2 Positioning and Mounting

Consult the inverter weight at the Table 8.1 on page 8 -2, Table 8.2 on page $8-3$ and Table 8.3 on page 8-5.

Mount the inverter in the upright position on a flat and vertical surface.

External dimensions and fixing holes position according to the Figure 3.1 on page 3-3. Refer to the Section 8.5 MECHANICAL DATA on page 8-8 for more details.

First mark the mounting points and drill the mouting holes. Then, position the inverter and firmly tighten the screws in all four corners to secure the inverter.

Minimum mounting clearances requirements for proper cooling air circulation are specified in Figure 3.2 on page 3-4.

Do not install heat sensitive components right above the inverter.

ATTENTION!

When arranging two or more inverters vertically, respect the minimum clearance $A+B$ (Figure 3.2 on page 3-4) and provide an air deflecting plate so that the heat rising up from the bottom inverter does not affect the top inverter.

ATTENTION!

Provide conduit for physical separation of the signal, control, and power conductors (refer to Section 3.2 ELECTRICAL INSTALLATION on page 3-8).

Model	A1	B1	C1	D1	E1	a2	b2	c2	a3	b3	c3	d3	e3	Torque *)
	mm (in)	mm (in)	$\begin{gathered} \mathrm{mm} \\ \text { (in) } \end{gathered}$	mm (in)	mm (in)	mm (in)	mm (in)	M	$\begin{gathered} \text { mm } \\ \text { (in) } \end{gathered}$	mm (in)	M	mm (in)	$\begin{gathered} \mathrm{mm} \\ \text { (in) } \end{gathered}$	N.m (lbf.in)
Frame size F	$\begin{gathered} 430 \\ (16.93) \end{gathered}$	$\begin{gathered} 1156 \\ (45.51) \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \end{gathered}$	$\begin{gathered} 169 \\ (6.65) \end{gathered}$	$\begin{gathered} 1234 \\ (48.58) \end{gathered}$	$\begin{gathered} 150 \\ (5.91) \end{gathered}$	$\begin{gathered} 1200 \\ (47.24) \end{gathered}$	M10	$\begin{gathered} 350 \\ (13.78) \end{gathered}$	$\begin{gathered} 1185 \\ (46.61) \end{gathered}$	M10	$\begin{gathered} 391 \\ (15.39) \end{gathered}$	$\begin{gathered} 1146 \\ (45.12) \end{gathered}$	$\begin{gathered} 35.0 \\ (309.8) \end{gathered}$
Frame size G	$\begin{gathered} 535 \\ (21.06) \end{gathered}$	$\begin{gathered} 1190 \\ (46.85) \end{gathered}$	$\begin{gathered} 426 \\ (16.77) \end{gathered}$	$\begin{gathered} 202 \\ (7.95) \end{gathered}$	$\begin{gathered} 1264 \\ (49.76) \end{gathered}$	$\begin{gathered} 200 \\ (7.87) \end{gathered}$	$\begin{gathered} 1225 \\ (48.23) \end{gathered}$	M10	$\begin{gathered} 400 \\ (15.75) \end{gathered}$	$\begin{gathered} 1220 \\ (48.03) \end{gathered}$	M10	$\begin{gathered} 495 \\ (19.49) \end{gathered}$	$\begin{gathered} 1182 \\ (46.53) \end{gathered}$	$\begin{gathered} 35.0 \\ (309.8) \end{gathered}$
Frame size H	$\begin{gathered} 686.0 \\ (27.00) \end{gathered}$	$\begin{aligned} & 1319.7 \\ & (51.95) \end{aligned}$	$\begin{gathered} 420.8 \\ (16.56) \end{gathered}$	$\begin{aligned} & 171.7 \\ & (6.75) \\ & \hline \end{aligned}$	$\begin{gathered} 1414 \\ (55.66) \\ \hline \end{gathered}$	$\begin{gathered} 175 \\ (6.88) \end{gathered}$	$\begin{gathered} 1350 \\ (53.14) \end{gathered}$	M10	$\begin{gathered} 595 \\ (23.42) \end{gathered}$	$\begin{gathered} 1345 \\ (52.95) \\ \hline \end{gathered}$	M10	$\begin{gathered} 647 \\ (25.47) \end{gathered}$	$\begin{gathered} 1307 \\ (51.45) \end{gathered}$	$\begin{gathered} 35.0 \\ (309.8) \end{gathered}$

Tolerance for dimensions d3 and e3: $+1.0 \mathrm{~mm}(+0.039 \mathrm{in})$.
Tolerance for the other dimensions: $\pm 1.0 \mathrm{~mm}$ ($\pm 0.039 \mathrm{in}$).
${ }^{(*)}$ Recommended torque for the inverter mounting (valid for c2 and c3).
Figure 3.1-(a) and (b) - Mechanical installation details - mm (in)

A	B	C	D
mm (in)	mm (in)	mm (in)	mm
150	250	20	80
(5.91)	(9.84)	(0.78)	(3.15)

Figure 3.2 - Free space around the inverter for ventilation

3.1.3 Cabinet Mounting

It is possible to mount the inverters in two manners, either on the mounting surface, or with the heatsink mounted outside the cabinet, so that the air for cooling the power heatsink is kept outside the enclosure (flange mounting). For these cases, consider:

Surface mounting:

$\boxed{\square}$ Provide adequate exhaustion, so that the internal cabinet temperature remains within the allowed range for the inverter operation conditions.
\square The power dissipated by the inverter at its rated condition, as specified in Table 8.1 on page 8-2 in the column "Power dissipated in watts, surface mount".

- Cooling air flow according to the Table 3.1 on page 3-5.
- The position and diameter of the mounting holes according to the Figure 3.1 on page 3-3.

Flange mounting:

ATTENTION!

The part of the inverter that stays outside the cabinet is rated IP20. See Section 8.2 ELECTRONICS/ GENERAL DATA on page 8-6.
$\boxed{\square}$ The power specified in Table 8.1 on page $8-2$ will be dissipated inside the cabinet. The other losses (power modules) will be dissipated at the external ventilation duct.
\square The inverter mounting supports and the hoisting eyes must be removed. Refer to the Figure 2.4 on page 2-10, positions I and J.
\square Dimensions of the flange-mounting opening and the diameters of the securing holes must be according to the Figure 3.1 on page 3-3.

Table 3.1 - Ventilation air flow (heatsink)

Model	Frame Size	CFM	1/s	$\mathrm{m}^{3} /$ min
CFW110242T4	F	250	118	7.1
CFW110312T4		320	151	9.1
CFW110370T4		380	180	10.8
CFW110477T4		460	217	13.0
CFW110515T4	G	680	321	19.3
CFW110601T4				
CFW110720T4				
CFW110760T4		1020	481	28.9
CFW110795T4	H	1100	520	31.2
CFW110877T4				
CFW111062T4				
CFW111141T4				

3.1.4 Access to the Control and Power Terminals

In order to get access to the control terminals, it is necessary to remove the HMI and the control rack cover, as showed in the Figure 3.3 on page 3-6.

Figure 3.3-Removal of the HMI and the control rack cover

In order to get access to the power terminals, it is necessary to remove the bottom front cover, as showed in the Figure 3.4 on page 3-6.

Figure 3.4 - Removal of the bottom front cover, to access to the power supply and motor connection terminals

In order to connect the power cables (line and motor), remove the bottom plate, as showed in the Figure 3.5 on page 3-7. In this case the protection degree of the inverter bottom part will be reduced.

Figure 3.5 - Removal of the bottom plate, to access the power terminals

3.1.5 HMI Installation at the Cabinet Door or Command Panel (Remote HMI)

Figure 3.6 - Data for the HMI installation at the cabinet door or command panel - mm [in]

Frame accessory can also be used to install the HMI as mentioned in Figure 7.1 on page 7-2 of accessory models.

3.2 ELECTRICAL INSTALLATION

DANGER!

The following information is merely a guide for proper installation. Comply with applicable local regulations for electrical installations.

DANGER!

Les informations suivantes constituent uniquement un guide pour une installation correcte. Respectez les réglementations locales en vigueur pour les installations électriques.

DANGER!

Make sure the AC power supply is disconnected before starting the installation.

DANGER!

Vérifiez que l'alimentation secteur CA est débranchée avant de commencer l'installation.

ATTENTION!

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with applicable local codes.

3.2.1 Identification of the Power and Grounding Terminals

R/L1 - R1/L1,1-R2/L1,2-S/L2-S1/L2,1-S2/L2,2-T/L3-T1/L3,1-T2/L3,2: AC power supply.

U/T1 - V/T2 - W/T3: motor connection.
$D C+$: DC Link positive terminal.

DC-: DC Link negative terminal.

(a) Frame size F power terminals and grounding points

(b) Frame size F DC connection terminals (In models with special DC hardware, the R/L1, S/L2 and T/L3 terminals are not internally connected in this version)
(c) Frame size G power terminals and grounding points

(d) Frame size G DC connection terminals (In models with special DC hardware, the $R / L 1, S / L 2$ and $T / L 3$ terminals are not internally connected in this version)
Figure 3.7 - (a) to (d) - Grounding and power terminals of frame sizes F and G

(a) Grounding and power terminals of frame size H

Figure 3.8 - (a) and (b) - Grounding and power terminals of frame size H

3.2.2 Power/Grounding Wiring and Fuses

ATTENTION!

Use proper cable lugs for the power and grounding connection cables.

ATTENTION!

Sensitive equipment such as PLCs, temperature controllers, and thermocouple cables, must be kept at a minimum distance of 0.25 m (9.84 in) from the frequency inverter and from the cables connecting the inverter to the motor.

DANGER!

Wrong cable connections:

- The inverter will be damaged if the power supply is connected to the output terminals (U/T1, V/T2, or W/T3).
- Check all the connections before powering up the inverter.
- When replacing an existing inverter by a CFW-11, check if the installation and wiring are according to the instructions listed in this manual.

DANGER!

Mauvaise connexion des câbles:

- Le variateur sera endommagé si l'alimentation d'entrée est connectée aux bornes de sortie (U/T1, V/T2 ou W/T3).
- Vérifier toutes les connexions avant de mettre le variateur sous tension.
- En cas de remplacement d'un variateur existant par un CFW-11, vérifier si l'installation et le câblage sont conformes aux instructions figurant dans ce manuel.

ATTENTION!

Residual Current Device (RCD):

- When installing an RCD to guard against electrical shock, only devices with a trip current of 300 mA should be used on the supply side of the inverter.
- Depending on the installation (motor cable length, cable type, multimotor configuration, etc.), RCD nuisance trips may occur. Contact the RCD manufacturer for selecting the most appropriate device to be used with inverters.

NOTE!

The wire gauges listed in the Table 3.2 on page 3-13 are orientative values. Installation conditions and the maximum permitted voltage drop must be considered for the proper wiring sizing.

Input fuses:

\square Use high speed fuses (semiconductor type) at the input for the protection of the inverter rectifier and wiring. Refer to Table 3.2 on page 3-13 for selecting the appropriate fuse rating ($I^{2}+$ must be equal to or lower than indicated in Table 3.2 on page 3-13, consider the cold (and not the fusion) current extinction value).

■ In order to meet UL requirements, use fuses according to Table 3.5 on page 3-19.
Table 3.2 - Recommended wire gauge and fuses for standard models - use only copper wire [$75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$]

$\overline{0}$		Power Terminals			Duty Cycle	Wiring			Fuse $\mathrm{I}^{2} \dagger$ @ $25^{\circ} \mathrm{C}$ [$\mathrm{A}^{2} \mathrm{~s}$]	WEG Recommended Fuses FNH aR Knife Contact			WEG Recommended Fuses FNHFE aR Flush End			
$\frac{0}{2}$	$\underbrace{0}$	Terminals	Bolt (wrench/bolt head type)	Recommended Torque N.m (lbf.in)		mm^{2}	AWG			$$	$\begin{gathered} \text { In } \\ {[A]} \end{gathered}$	Weg Reference	¢	$\begin{gathered} \text { In } \\ {[A]} \end{gathered}$	Weg Reference	
	$\left\lvert\, \begin{gathered} \text { R/L1 }-\mathrm{S} / \mathrm{L} 2-\mathrm{T} / \mathrm{L} 3 \\ \mathrm{U} / \mathrm{T} 1-\mathrm{V} / \mathrm{T} 2-\mathrm{W} / \mathrm{T} 3 \end{gathered}\right.$		M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	2×50	$2 \times 1 / 0$	Ring tongue	320000	2	450	$\begin{aligned} & \text { FNH2- } \\ & \text { 450K-A } \end{aligned}$	3	450	$\begin{gathered} \text { FNH3FEM- } \\ 450 \mathrm{Y}-\mathrm{A} \end{gathered}$	
			ND		2×70	$2 \times 2 / 0$										
		DC+, DC-		M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \\ \hline \end{gathered}$	HD/ND	2×95									$2 \times 3 / 0$
		$\stackrel{\square}{\ominus}$	M8 ((Phillips hex head)	10 (88.5)	HD/ND	70	2/0									
$\overline{7}$		$\begin{aligned} & \text { R/L1 - S/L2 - T/L3 - } \\ & \mathrm{U} / \mathrm{T} 1-\mathrm{V} / \mathrm{T} 2-\mathrm{W} / \mathrm{T} 3 \end{aligned}$	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	2×70	$2 \times 1 / 0$	Ring tongue	414000	2	630	$\begin{aligned} & \text { FNH2- } \\ & \text { 630K-A } \end{aligned}$	3	450	$\begin{gathered} \text { FNH3FEM- } \\ 450 Y-A \end{gathered}$	
					ND	2×95	$2 \times 4 / 0$									
		DC+, DC-	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \\ \hline \end{gathered}$	HD/ND	2×120	$2 \times 4 / 0$									
)	$\stackrel{\square}{\square}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	120	4/0									
		$\begin{aligned} & \text { R/L1 - S/L2 - T/L3 - } \\ & \text { U/T1 - V/T2 - W/T3 } \end{aligned}$	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	2×120	$2 \times 4 / 0$	Ring tongue	414000	2	710	$\begin{aligned} & \text { FNH2- } \\ & \text { 710K-A } \end{aligned}$	3	500	$\begin{gathered} \text { FNH3FEM- } \\ 500 \mathrm{Y}-\mathrm{A} \end{gathered}$	
					ND	2×120	$2 \times 4 / 0$									
		DC+, DC-	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD/ND	2×150	2×300									
		$\stackrel{\ominus}{\square}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	120	4/0									
¢		$\begin{aligned} & \text { R/L1 - S/L2 - T/L3 - } \\ & \mathrm{U} / \mathrm{T} 1-\mathrm{V} / \mathrm{T} 2-\mathrm{W} / \mathrm{T} 3 \end{aligned}$	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	2×120	$2 \times 4 / 0$	Ring tongue	1051000	3	900	$\begin{aligned} & \text { FNH2- } \\ & \text { 900K-A } \end{aligned}$	3	630	$\begin{gathered} \text { FNH3FEM- } \\ 630 Y-A \end{gathered}$	
					ND	2×185	2×350									
		DC+, DC-	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \\ \hline \end{gathered}$	HD/ND	2×240	2×500									
		$\stackrel{1}{\square}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	185	350									

$\overline{\mathrm{O}} \stackrel{\sim}{\mathrm{~N}}$	Power Terminals			Duty Cycle	Wiring			$\begin{gathered} \text { Fuse } \mathrm{l}^{\circ} \dagger \\ @ 25^{\circ} \mathrm{C} \\ {\left[\mathrm{~A}^{2} \mathrm{~s}\right]} \end{gathered}$	WEG Recommended Fuses FNH aR Knife Contact			WEG Recommended Fuses FNHFE aR Flush End		
\sum_{2}°	Terminals	Bolt (wrench/bolt head type)	Recommended Torque N.m (lbf.in)		mm^{2}	AWG			$\begin{aligned} & 0 \\ & \stackrel{N}{n} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { In } \\ & {[A]} \end{aligned}$	Weg Reference	-	$\begin{aligned} & \text { In } \\ & {[A]} \end{aligned}$	Weg Reference
$\left\|\begin{array}{c} \frac{4}{2} \\ \frac{2}{n} \\ \frac{0}{3} \\ 3 \\ u \\ \hline \end{array}\right\|$	$\begin{aligned} & \mathrm{R} / \mathrm{L} 1-\mathrm{S} / \mathrm{L} 2-\mathrm{T} / \mathrm{L} 3- \\ & \mathrm{U} / \mathrm{T} 1-\mathrm{V} / \mathrm{T} 2-\mathrm{W} / \mathrm{T} 3 \end{aligned}$	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	3×120	$3 \times 4 / 0$	$\begin{gathered} \text { Ring } \\ \text { tongue } \end{gathered}$	1445000	3	1000	$\begin{aligned} & \text { FNH2- } \\ & 1000 \mathrm{~K}-\mathrm{A} \end{aligned}$	3	700	FNH3FEM-$700 Y-A$
				ND	3×120	$3 \times 4 / 0$								
	DC+, DC-	$\begin{gathered} \text { M12 (Phillips } \\ \text { hex head) } \end{gathered}$	$\begin{gathered} 60 \\ (531.00) \\ \hline \end{gathered}$	HD/ND	76 mm ${ }^{(2)}$	3 in ${ }^{(2)}$								
	$\stackrel{\rightharpoonup}{\square}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	120	4/0								
	$\begin{aligned} & \text { R/L1 - S/L2 - T/L3 - } \\ & \mathrm{U} / \mathrm{T1}-\mathrm{V} / \mathrm{T} 2-\mathrm{W} / \mathrm{T} 3 \end{aligned}$	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	3×120	$3 \times 4 / 0$	$\begin{gathered} \text { Ring } \\ \text { tongue } \end{gathered}$	1445000	3	$\begin{gathered} 2 \times \\ 630 \end{gathered}$	$\begin{aligned} & \text { FNH2- } \\ & \text { 630K-A } \end{aligned}$	3	800	FNH3FEM-800Y-A
$\stackrel{\square}{\circ}$				ND	3×150	3×300								
$\frac{0}{3}$	DC+, DC-	$\begin{gathered} \text { M12 (Phillips } \\ \text { hex head) } \end{gathered}$	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD/ND	76 mm ${ }^{(2)}$	3 in ${ }^{(2)}$								
$\stackrel{\stackrel{\pi}{U}}{G}$	$\stackrel{\ominus}{\ominus}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	150	300								
	$\begin{aligned} & \text { R/LI - S/L2 - T/L3 - } \\ & \text { U/TI - V/T2 - W/T3 } \end{aligned}$	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	3×120	$3 \times 4 / 0$	Ring tongue	1445000	3	$\begin{gathered} 2 x \\ 710 \end{gathered}$	FNH2- 710K-A	3	900	FNH3FEM-$900 Y-A$
$\stackrel{\sim}{1}$				ND	3×185	3×350								
$\left\lvert\, \begin{aligned} & \frac{0}{3} \\ & 3 \end{aligned}\right.$	DC+, DC-	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \\ \hline \end{gathered}$	HD/ND	102 mm ${ }^{(2)}$	4 in ${ }^{(2)}$								
岂	\bigcirc	M8 (Phillips hex head)	10 (88.5)	HD/ND	185	350								
$\begin{aligned} & \frac{7}{2} \\ & \frac{0}{0} \\ & \frac{0}{3} \\ & \frac{3}{3} \\ & \hline \end{aligned}$	R/L1 - S/L2-T/L3-	$\begin{aligned} & \text { M12 (Phillips } \\ & \text { hex head) } \end{aligned}$	$\begin{gathered} 60 \\ (531.00) \\ \hline \end{gathered}$	HD	3×150	3×300	$\begin{gathered} \text { Ring } \\ \text { tongue } \end{gathered}$	1445000	3	$\begin{array}{r} 2 \times \\ 710 \end{array}$	$\begin{aligned} & \text { FNH2- } \\ & 710 \mathrm{~K}-\mathrm{A} \end{aligned}$	3	900	FNH3FEM-$900 Y-A$
	$\mathrm{U} / \mathrm{T} 1-\mathrm{V} / \mathrm{T} 2-\mathrm{W} / \mathrm{T} 3$			ND	3×185	3×500								
	DC+, DC-	$\begin{gathered} \text { M12 (Phillips } \\ \text { hex head) } \end{gathered}$	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD/ND	102 mm ${ }^{(2)}$	4 in ${ }^{(2)}$								
	$\stackrel{\ominus}{\ominus}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	185	500								

©	©	Power Terminals			Duty Cycle	Wiring			Fuse $\mathrm{I}^{2} \dagger$ @ $25^{\circ} \mathrm{C}$ [$\mathrm{A}^{2} \mathrm{~s}$]	WEG Recommended Fuses FNH aR Knife Contact			WEG Recommended Fuses FNHFE aR Flush End		
\sum	约	Terminals	Bolt (wrench/bolt head type)	Recommended Torque N.m (lbf.in)		mm ${ }^{2}$	AWG			$\begin{aligned} & \text { N } \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & \text { Dik } \end{aligned}$	$\begin{gathered} \text { In } \\ {[\mathrm{A}]} \end{gathered}$	Weg Reference	-	$\begin{gathered} \text { In } \\ {[\mathrm{A}]} \end{gathered}$	Weg Reference
			M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	4×120	$4 \times 4 / 0$	Ring tongue	1051000	3	$\begin{array}{r} 2 \times \\ 800 \end{array}$	$\begin{aligned} & \text { FNH2- } \\ & \text { 800K-A } \end{aligned}$	3	1000	$\begin{aligned} & \text { FNH3FEM- } \\ & 1000 \mathrm{Y}-\mathrm{A} \end{aligned}$
$\stackrel{\stackrel{i}{2}}{\stackrel{2}{2}}$					ND	4×150	4×300								
$\stackrel{\bigcirc}{2}$		DC+, DC-	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD/ND	$102 \mathrm{~mm}{ }^{(2)}$	4 in (2)								
U		$\stackrel{\ominus}{\ominus}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	2×70	$2 \times 2 / 0$								
		R1/L1,1 - R2/L1,2 -	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	4×120	$4 \times 4 / 0$	Ringtongue	1051000	3	$\begin{array}{r} 2 \times \\ 800 \end{array}$	$\begin{aligned} & \text { FNH2- } \\ & \text { 800K-A } \end{aligned}$	3	1000	$\begin{aligned} & \text { FNH3FEM- } \\ & 1000 \mathrm{Y}-\mathrm{A} \end{aligned}$
		$\begin{array}{\|c\|} \hline \text { T1/L3,1 - T2/L3,2 } \\ \mathrm{U} / \mathrm{T} 1-\mathrm{V} / \mathrm{T} 2-\mathrm{W} / \mathrm{T} 3 \end{array}$			ND	4×150	4×300								
		DC+, DC-	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD/ND	$\begin{gathered} 2 x \\ 76 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 2 x \\ 3 \text { in }^{(2)} \end{gathered}$								
	H	\bigcirc	M8 (Phillips hex head)	10 (88.5)	HD/ND	2×120	$2 \times 4 / 0$								
2	-	$\begin{array}{\|l\|} \hline \text { R1/L1,1 - R2/L1,2 - } \\ \text { S1/L2,1 - S2/L2,2 - } \\ \text { T1/L3,1 - T2/L3,2 } \\ \text { U/T1 - V/T2 - W/T3 } \\ \hline \end{array}$	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	4×150	4×300	Ringtongue	1445000	3	$\begin{array}{r} 2 \times \\ 900 \end{array}$	$\begin{aligned} & \text { FNH2- } \\ & \text { 900K-A } \end{aligned}$	3	1250	$\begin{aligned} & \text { FNH3FEM- } \\ & 1250 Y-A \end{aligned}$
					ND	4×240	4×500								
		DC+, DC-	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \\ \hline \end{gathered}$	HD/ND	$\begin{gathered} 2 \mathrm{x} \\ 76 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 2 x \\ 3 \text { in }^{(2)} \\ \hline \end{gathered}$								
		\bigcirc	M8 (Phillips hex head)	10 (88.5)	HD/ND	2×120	$2 \times 4 / 0$								
		$\begin{array}{\|c\|} \hline \text { R1/L1,1 }- \text { R2/L1,2 - } \\ \text { S1/L2, }- \text { S2/L2,2 - } \\ \text { T1/L3,1 - T2/L3,2 } \\ \text { U/T1 - V/T2 - W/T3 } \end{array}$	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD	4×185	4×350	Ringtongue	1445000	3	$\begin{array}{r} 2 \times \\ 900 \end{array}$	$\begin{aligned} & \text { FNH2- } \\ & \text { 900K-A } \end{aligned}$	3	1400	$\begin{gathered} \text { FNH3FEM- } \\ 1400 Y-A \end{gathered}$
		ND			4×240	4×500									
		DC+, DC-	M12 (Phillips hex head)	$\begin{gathered} 60 \\ (531.00) \end{gathered}$	HD/ND	$\begin{gathered} 2 \mathrm{x} \\ 102 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 2 x \\ 4 \text { in }^{(2)} \end{gathered}$								
		\dagger	M8 (Phillips hex head)	10 (88.5)	HD/ND	2×150	2×300								

(1) For these applications, the fuses cannot be installed on FSW and RPW switch-disconnectors - only on BNH individual mounting bases.
(2) 6.4 mm (1/4 in) copper bus bar must be used with width specified in Table 3.2 on page 3-13.

Table 3.3-Recommended Wiring/Fuses for models with DC power supply (special DC Hardware) - use copper wiring only $\left(75^{\circ} \mathrm{C}\right)\left(167^{\circ} \mathrm{F}\right)$

Model	$\begin{aligned} & \stackrel{N}{N} \\ & \text { N } \\ & \text { © } \\ & \frac{0}{4} \end{aligned}$	Power terminals			Duty cycle	Wiring			Fuse [A]	Fuse $\mathrm{I}^{2} \dagger$ @ $25^{\circ} \mathrm{C}$ Terminals [$\mathrm{A}^{2} \mathrm{~s}$]
		Terminals		Recommended torque N.m (lbf.in)		mm^{2}	AWG	Terminais		
CFW110795T4DC		U/T1 - V/T2 - W/T3	M12 (Phillips hex head)	60 (531.00)	HD	3×150	3×300	Ring tongue	$\begin{array}{r} 2 \times \\ 800 \end{array}$	See note ${ }^{(2)}$
		U/T1-V/T2-W/T3			ND	3×185	3×400			
		DC+, DC-	M12 (Phillips hex head)	60 (531.00)	HD/ND	$102 \mathrm{~mm}{ }^{(1)}$	4 in ${ }^{(1)}$			
		$\stackrel{\ominus}{\ominus}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	185	400			
CFW110877T4DC	H	U/T1-V/T2 - W/T3	M12 (Phillips hex head)	60 (531.00)	HD	4×120	$4 \times 4 / 0$	Ring tongue	$\begin{array}{r} 2 \times \\ 800 \end{array}$	See note ${ }^{(2)}$
					ND	4×150	4×300			
		DC+, DC-	M12 (Phillips hex head)	60 (531.00)	HD/ND	$\begin{gathered} 2 \mathrm{x} \\ 76 \mathrm{~mm}{ }^{(1)} \end{gathered}$	2×3 in ${ }^{(1)}$			
		$\stackrel{1}{\square}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	4×120	$4 \times 4 / 0$			
CFW111062T4DC ${ }^{(3)}$		U/T1-V/T2 - W/T3	M12 (Phillips hex head)	60 (531.00)	HD	4×150	4×300	Ring tongue	$\begin{array}{r} 2 \times \\ 900 \end{array}$	$\begin{gathered} \text { See } \\ \text { note } \end{gathered}$
					ND	4×240	4×500			
		DC+, DC-	M12 (Phillips hex head)	60 (531.00)	HD/ND	$\begin{gathered} 2 \mathrm{x} \\ 76 \mathrm{~mm} \\ \\ \hline \end{gathered}$	2×3 in ${ }^{(1)}$			
		$\stackrel{\ominus}{\square}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	2×120	$2 \times 4 / 0$			
CFW111141T4DC ${ }^{(3)}$		U/T1-V/T2 - W/T3	M12 (Phillips hex head)	60 (531.00)	HD	2×120	$2 \times 4 / 0$	Ring tongue	$\begin{array}{r} 2 \times \\ 900 \end{array}$	$\begin{gathered} \text { See } \\ \text { note } \end{gathered}$
					ND	4×185	4×350			
		DC+, DC-	M12 (Phillips hex head)	60 (531.00)	HD/ND	$\begin{gathered} 2 \mathrm{x} \\ 102 \mathrm{~mm} \end{gathered}$	2×4 in ${ }^{(1)}$			
		$\stackrel{\ominus}{\square}$	M8 (Phillips hex head)	10 (88.5)	HD/ND	2×150	2×300			

[^0]Table 3.4 - (a) and (b)-Recommended terminals for power connections
(a) Cables with size in mm^{2}

Wire Size [mm^{2}]	Screw	Manufacturer	Lug Terminal, Code	Crimping Tool Code	Number of Crimps
50	M8	Burndy (FCl)	YA1CL	Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 ou Y35 or Y750 / U1CRT	1
		Tyco	36916	Manual tool: 1490748-1 Jaw: 1490413-5 + 1490414-3	
70	M8	Hollingsworth	RM 70-8	H 6.500	1
		Burndy (FCl)	YA26L	Tool without die: MY29-3 or Y644 or Y81 Tool + die: Y46 or Y35 or Y750 / U26RT	
		Tyco	321870	Manual tool: 1490748-1 Jaw: 1490413-6 + 1490414-3	
	M12	Hollingsworth	RM70-12	H 6.500	1
		Tyco	710028-5	Manual hydraulic compression tool (Item TE: 1490749-1) Mold: 1583098-1	
120	M8	Hollingsworth	RM 120-8	H 6.500	1
		Tyco	709820-1	Manual hydraulic compression tool (Item TE: 1490749-1) Mold: 1583098-1	
	M12	Hollingsworth	RM120-12	H 6.500	1
		Tyco	709820-3	Manual hydraulic compression tool (Item TE: 1490749-1) Mold: 1583098-1	
150	M8	Hollingsworth	RM 150-8	H 6.500	
	M12	Hollingsworth	RM150-12	H 6.500	1
		Tyco	709821-3	Manual hydraulic compression tool (Item TE: 1490749-1) Mold: 1752868-1 + 46751-2	
185	M12	Hollingsworth	RM185-12	Hydraulic tool : H6-500	1
		Burndy (FCl)	YA31L	Dieless tool: Y644 or Y81 Tool + die: Y35 or Y750 / U31RT	1
240	M12	Hollingsworth	RM240-12	Hydraulic tool: H6-500	1
		Burndy (FCI)	YA34L6	Dieless tool: Y644 or Y81 Tool + die: Y35 or Y750 / U34RT	1

(b) Cables with size in AWG

Wire Size [AWG/kcmil]	Screw	Manufacturer	Lug Terminal, Code	Crimping Tool Code	Number of Crimps
1/0	M8	Hollingsworth	R 10516	H 6.500	
		Burndy (FCl)	YA25L	Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U25RT	1
		Tyco	36916	Manual tool: 1490748-1 Jaw: 1490413-5 + 1490414-3	
2/0	M8	Hollingsworth	20516	H 6.500	1
		Burndy (FCI)	YA26L	Tool without die: MY29-3 or Y644 or Y81 Tool + die: Y46 or Y35 or Y750 / U26RT	
		Tyco	321870	Manual tool: 1490748-1 Jaw: 1490413-6 + 1490414-3	
	M12	Hollingsworth	R 4038	H 6.500	1
		Tyco	709820-3	Manual hydraulic compression tool (Item TE: 1490749-1) Mold: 1583098-1	
4/0	M8	Hollingsworth.	R 2038	H 6.500	1
		Tyco	709820-1	Manual hydraulic compression tool (Item TE: 1490749-1) Mold: 1583098-1	
	M12	Hollingsworth	R 4038	H 6.500	1
		Tyco	709820-3	Manual hydraulic compression tool (Item TE: 1490749-1) Mold: 1583098-1	
300	M12	Hollingsworth	RM150-12	H 6.500	1
		Tyco	709821-3	Manual hydraulic compression tool (Item TE: 1490749-1) Mold: 1752868-1 + 46751-2	
350	M12	Hollingsworth	R 35012	Hydraulic Tool: H6-500	1
		Burndy (FCl)	YA31L	Dieless tool: Y644 or Y81 Tool + die: Y35 or Y750 / U31RT	1
500	M12	Hollingsworth	R 50012	Hydraulic Tool: H6-500	1
		Burndy (FCl)	YA34L6	Dieless tool: Y644 or Y81 Tool + die: Y35 or Y750 / U34RT	1

Table 3.5 - Fuses and circuit breaker specifications according to UL and IEC standard

Model	Inverter Protection With Fuses ${ }^{(1)}$			Inverter Protection With Inverse-Time Circuit Breaker		
	Maximum Rated Current of Input Fuses	Fuse Type / Reference	Maximum Power Supply Short-Circuit Current	Maximum Rated Current of Circuit Breaker, in \% of Motor Rated Current (FLA) ${ }^{(1)}$	Minimum Cabinet Dimensions (Depth X Height X Width)	Maximum Power Supply ShortCircuit Current
CFW11 0242 T 4	700 A	Class J fuse	$\begin{gathered} 100 \text { kA @ } \\ 480 \text { V } \end{gathered}$	300 \%	$\begin{gathered} 600 \times 2000 \times 800 \mathrm{~mm} \\ (23.6 \times 78.7 \times 31.5 \mathrm{in}) \end{gathered}$	65 kA@ 480 V
CFW11 0312 T 4				250 \%		
CFW11 0370 T 4				200 \%		
CFW11 0477 T 4				150 \%		
CFW11 0515 T 4	900 A	Class J fuse		225 \%	$\begin{aligned} & 600 \times 2000 \times 1400 \mathrm{~mm} \\ & (23.6 \times 78.7 \times 55.1 \mathrm{in}) \end{aligned}$	
CFW11 0601 T 4				200 \%		
CFW11 0720 T 4				167 \%		
CFW11 0760 T 4				158 \%		
CFW11 0795 T 4	$2 \times 900 \mathrm{~A}$	WEG high speed FNH3-900K-A / Bussmann FBP-900 / Mersen Ferraz A070URD32KI0900		200 \%	$\begin{aligned} & 600 \times 2000 \times 1400 \mathrm{~mm} \\ & (23.6 \times 78.7 \times 55.1 \mathrm{in}) \end{aligned}$	
CFW11 0877 T 4				175 \%		
CFW11 1062 T 4				150 \%		
CFW11 1141 T 4				140 \%		

(1) Those values were defined considering UL requirements (safety and damage to the complete installation) and not the limit to not destroy internal components of the inverter (e.g. rectifier module). If that is the case, it's required to use semiconductor fuses with $1^{2} t$ equal to or lower than the specified in Table 3.2 on page 3-13 (only suitable semiconductor fuses can provide protection for input components such as rectifiers).

3.2.3 Power Connections

(a) Models with alternating current power supply (IP20)

(b) Models with DC power supply (degree of protection IPOO - special DC hardware)
(1) According to Chapter 8 TECHNICAL SPECIFICATIONS on page 8-1, Table 8.2 on page 8-3.

Figure 3.9 - (a) and (b) - Power and grounding connections - frame sizes F and G

(a) Models with AC power supply (IP20 degree of protection) - frame size H

(b) Models with direct current power supply (IP00 degree of protection) - special hardware DC ${ }^{(2)}$ - frame size H
(1) For frame size H models, two line reactances are required with minimum voltage drop of 3% under rated condition of the inverter.
$\mathrm{L}=919 \cdot \frac{\Delta \mathrm{~V}[\%] \cdot \mathrm{V}_{\mathrm{L}}[\mathrm{V}]}{\mathrm{f}_{\mathrm{R}}[\mathrm{Hz}] \cdot \mathrm{I}[\mathrm{A}]}[\mu \mathrm{H}]$
$\Delta \mathrm{V}=$ Percentage voltage drop.
V_{LL} I Inverter supply line voltage.
$f_{R}=$ Line frequency.
$I=$ Reactor current. That is equal to rms input current for models 584 T 6 and 625 T 6 . In models 758 T 6 and 804 T 6 as it's used 2 reactors per inverter, reactor current is half of the total rms input current - for thermal and saturation design of line reactors in this case also consider a current unbalance of 15% between the reactors as specified in note (2) below.
(2) For frame size H models 758 T 6 and 804 T 6 it's necessary two line reactors with 3% voltage drop minimum each. Use the equation provided in note (1) to calculate inductance L value. For example, for 804 T 6 model with $690 \mathrm{Vac} / 50 \mathrm{~Hz}$ power supply $\mathrm{L}=108 \mathrm{uH}$. For thermal and saturation design of line reactors consider half the total rms current of the inverter and a current unbalance of 15% between the reactors. For example in model 758 T 6 with 575 Vac power supply, the maximum current in each reactor is $1.15 .(758 / 2)=436 \mathrm{~A}$.
(3) According to Chapter 8 TECHNICAL SPECIFICATIONS on page 8-1, Table 8.2 on page 8-3.

Figure 3.10 - (a) and (b) - Power and grounding connections - frame size H

3.2.3.1 Input Connections

DANGER!

Provide a disconnect device for the input power supply of the inverter.
This device must disconnect the power line from the inverter input (at low voltage) when necessary (for example: during maintenance jobs).

DANGER!

Montez un dispositif de coupure sur l'alimentation du variateur.
Cet appareil doit déconnecter la ligne d'alimentation de l'entrée de l'onduleur (à basse tension) lorsque cela est nécessaire (par exemple : lors de travaux de maintenance).

ATTENTION!

A contactor or another device that frequently disconnects and reapplies the AC supply to the inverter, in order to start and stop the motor, may cause damage to the inverter power section. The drive is designed to use control signals for starting and stopping the motor. If used for that purpose, the input device must not exceed one operation per minute; otherwise, the inverter may be damaged.

ATTENTION!

The power supply that feeds the inverter must have a grounded neutral. In case of IT networks, follow the instructions described in Item 3.2.3.1.2 IT Networks on page 3-23.

NOTE!

The input power supply voltage must be compatible with the inverter rated voltage.

NOTE!

Power factor correction capacitors are not needed at the inverter input (R, S, T) and must not be installed at the output ($\mathrm{U}, \mathrm{V}, \mathrm{W}$).

NOTE!

For models with special DC hardware an external pre-charge circuit must be provided. For further information, refer to the manufacturer.

3.2.3.1.1 Power Supply Capacity

- Suitable for circuits with capacity to deliver no more than:
- 100 kA symmetric at 240 V or 480 V when the inverter is protected by fuses;
- 65 kA symmetric at 240 V or 480 V when the inverter is protected by inverse time circuit breaker.

■ For compliance with UL standard refer to Table 3.5 on page 3-19.

3.2.3.1.2 IT Networks

ATTENTION!

To use frame sizes F, G and H inverters in IT networks (neutral ungrounded or grounded through a high ohmic value resistor), or in corner-grounded delta networks, it is necessary to disconnect the cable with the ring tongue lug from the ground busbar and connect it to the isolated point on the power terminal block, as showed in the Figure 3.11 on page 3-23 and Figure 3.12 on page 3-23. This is necessary to avoid damages when operating with a line input short circuited with the ground.

NOTE!

The ground-fault protection (F074) is intended for IGBT protection and may not be activated when inverter output is shorted to ground, when fed by IT networks.
External insulation monitoring devices should be used for system fault monitoring.

Figure 3.11 - (a) and (b) - Ground connections - location and procedure for adapting to IT or corner-ground networks

Figure 3.12-Grounding connections - location and procedure to adapt to the IT or delta-grounded networks - frame size H

3.2.3.1.3 Command Fuses of Pre-charge Circuit

■ Specifications of the used auxiliary fuse:
$4 \mathrm{~A} / 690 \mathrm{~V}$ slow blow fuse.
Manufacturer: Ferraz Shawmut.
Commercial reference: 17019-G.
WEG part number 10411503.

3.2.3.2 Dynamic Braking

ATTENTION!

Frame sizes F , G and H models do not have internal braking IGBT. When necessary, braking modules and external resistors should be installed, as shown in Figure 3.13 on page 3-26.

NOTE!

Set P0151 and P0185 to the maximum value (800 V) when using dynamic braking.

The braking torque that can be obtained using frequency inverters without dynamic braking varies between 10% to 35% of the motor rated torque.

In order to obtain higher braking torques, resistors for dynamic braking must be used. In this case, the energy regenerated in excess is dissipated on a resistor mounted outside the inverter.

This type of braking is used in cases when short deceleration times are desired or when high inertia loads are driven.

For the vector control mode, there is the possibility of using the "Optimal Braking", eliminating in many cases the need of dynamic braking use.

Figure 3.13 - (a) and (b) - Sequence for the connection cables of DC+ and DC- for connection of an external braking module to CFW-11 inverter

3.2.3.3 Output Connections

ATTENTION!

The inverter has an electronic motor overload protection that must be adjusted according to the driven motor. When several motors are connected to the same inverter, install individual overload relays for each motor.

ATTENTION!

The motor overload protection available in the CFW-11 is in accordance with the IEC60947-4-2 and UL508C standards, note the following information:
\square Trip current equal to 1.25 times the motor rated current (PO401) adjusted in the oriented start-up menu.

■ The maximum value for P 0398 (Motor Service Factor) is 1.15.

- Parameters P0156, P0157 and P0158 (Overload Current at $100 \%, 50 \%$ and 5% of the rated speed, respectively) are automatically adjusted when parameters P0401 (Motor Rated Current) and/or P0406 (Motor Ventilation) are adjusted in the oriented start-up routine. If parameters P0156, P0157 and P0158 are manually adjusted, the maximum allowed value is $1.05 \times \mathrm{P} 0401$.

ATTENTION!

If a disconnect switch or a contactor is installed between the inverter and the motor, never operate it with a spinning motor or with voltage at the inverter output.

The characteristics of the cable used to connect the motor to the inverter, as well as its routing, are extremely important to avoid electromagnetic interference in other equipment and not to affect the life cycle of windings and bearings of the controlled motors.

Recommendations for motor cables:

Unshielded Cables:

\square Can be used when it is not necessary to meet the European directive of electromagnetic compatibility (2014/30/EU).

■ Keep motor cables away from other cables (signal cables, sensor cables, control cables, etc.), according to the Table 3.6 on page 3-27.
\square The emission of the cables may be reduced by installing them inside a metal conduit, which must be grounded at both ends.
\square Connect a fourth cable between the motor ground and the inverter ground.

NOTE!

The magnetic field created by the current circulation in these cables may induce currents in nearby metal parts, heating them, and cause additional electrical losses. Therefore, keep the three cables ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) always together.

Shielded Cables:

\square Are mandatory when the electromagnetic compatibility directive (2014/30/EU) has to be met, as defined by the standard EN 61800-3 "Adjustable Speed Electrical Power Drive Systems". These cables act mainly by reducing the irradiated emission in the radio-frequency range.
\square Regarding to the types and installation details, follow the recommendations of IEC 60034-25 "Guide for Design and Performance of Cage Induction Motors Specifically Designed for Converter Supply", verify the summary in the Figure 3.14 on page 3-28. Refer to the standard for further details and eventual modifications related to new revisions.
\square Keep motor cables away from other cables (signal cables, sensor cables, control cables, etc.), according to the Table 3.6 on page 3-27.
\square The grounding system must be well interconnected among the several installation locations such as the grounding points of the motor and the inverter. Voltage difference or impedance between the several points may cause the circulation of parasite currents among the equipments connected to the ground, resulting in electromagnetic interference problems.

Table 3.6 - Minimum separation distance between motor cables and all other cables

Cable Length	Minimum Separation Distance
$\leq 30 \mathrm{~m}(100 \mathrm{ft})$	$\geq 10 \mathrm{~cm}(3.94 \mathrm{in})$
$>30 \mathrm{~m}(100 \mathrm{ft})$	$\geq 25 \mathrm{~cm}(9.84 \mathrm{in})$

(a) Symmetrical shielded cables: three concentric conductors with or without a ground conductor, symmetrically manufactured, with an external shield of copper or aluminum

(b) Alternatives for conductors up to $10 \mathrm{~mm}^{2}$
(1) $\mathrm{SCu}=$ copper or aluminum external shielding.
(2) $\mathrm{AFe}=$ galvanized steel or iron.
(3) PE $=$ ground conductor.
(4) Cable shielding must be grounded at both ends (inverter and motor). Use 360° connections for low impedance to high frequencies.
(5) For using the shield as a protective ground, it must have at least 50% of the power cables conductivity. Otherwise, add an external ground conductor and use the shield as an EMC protection.
(6) Shielding conductivity at high frequencies must be at least 10% of the phase power cable conductivity.

Figure 3.14 - (a) and (b) - Motor connection cables recommended by IEC 60034-25

3.2.4 Grounding Connections

DANGER!

Do not share the grounding wiring with other equipment that operate with high currents (e.g. high power motors, soldering machines, etc.). When installing several inverters, follow the procedures presented in Figure 3.15 on page 3-29 for the grounding connection.

DANGER!

Ne pas partager le câblage de mise à la terre avec d'autres équipements opérant avec des intensités élevées (par ex: moteurs haute puissance, postes de soudure, etc.). Lors de l'installation de plusieurs variateurs, appliquer les procédures présentées dans l'illustration Figure 3.15 à la page 3-29 pour la connexion de mise à la terre.

ATTENTION!

The neutral conductor of the network must be solidly grounded; however, this conductor must not be used to ground the inverter.

DANGER!

The inverter must be obligatorily connected to a protective ground (PE).
Observe the following:

- Use a minimum wire gauge for ground connection equal to the indicated in the Table 3.2 on page 3-13 or Table 3.3 on page 3-16. Conform to local regulations and/or electrical codes in case a different wire gauge is required.
- Connect the inverter grounding connections to a ground bus bar, to a single ground point, or to a common grounding point (impedance $\leq 10 \Omega$).
- To comply with IEC 61800-5-1 standard, connect the inverter to the ground by using a single conductor copper cable with a minimum wire gauge of 10 mm 2 , since the leakage current is greater than 3.5 mAac.

DANGER!

Le variateur doit être raccordé à une terre de protection (PE).
Observer les règles suivantes:

- Utilisez la section minimale de raccordement à la terre indiquée dans les Table 3.2 à la page $3-13$ or Table 3.3 à la page $3-16$. Se conformer aux à la règlementation locale et/ou aux codes de l'électricité si une autre épaisseur de fil est nécessaire.
- Connectez la masse du variateur à une barre collectrice de terre en un seul point ou à un point commun de raccordement à la terre (impédance $\leq 10 \Omega$).
- Pour assurer la conformité avec la norme CEI 61800-5-1, connecter le variateur à la terre grâce à un câble en cuivre à un conducteur ayant une épaisseur de fil minimale de $10 \mathrm{~mm}^{2}$, étant donné que le courant de fuite est supérieur à $3,5 \mathrm{~mA}$ C.A.

Figure 3.15-Grounding connections with multiple inverters

3.2.5 Control Connections

The control connections (analog inputs/outputs, digital inputs/outputs), must be made at the CC1 control board terminal strip XC1.

Functions and typical connections are presented in Figure 3.16 on page 3-31.

CW	XC1 Terminal Strip		Factory Setting Function	Specifications
	1	+ REF	Positive reference for potentiometer	Output voltage: $+5.4 \mathrm{~V}, \pm 5 \%$. Maximum output current: 2 mA
	2	All +	Analog input 1: Speed reference (remote)	Differential Resolution: 12 bits Signal: 0 to $10 \mathrm{~V}\left(\mathrm{R}_{\mathrm{IN}}=400 \mathrm{k} \Omega\right) / 0$ to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{IN}}=500 \Omega\right)$ Maximum voltage: $\pm 30 \mathrm{~V}$
'	4	REF-	Negative reference for potentiometer	Output voltage: - 4.7 V , ± 5 \% Maximum output curren: 2 mA
	5	Al2 +	Analog input 2: no function	Differential Resolution: 11 bits + sinal Signal: 0 to $\pm 10 \mathrm{~V}\left(\mathrm{R}_{\mathbb{N}}=400 \mathrm{k} \Omega\right) / 0$ to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA}\left(\mathrm{R}_{\mathbb{N}}=500 \Omega\right)$ Maximum voltage: $\pm 30 \mathrm{~V}$
	6	Al2-		
	7	AO1	Analog output 1: speed	Galvanic isolation Resolution: 11 bits Signal: 0 to $10 \mathrm{~V}\left(\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right) / 0$ to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{L}} \leq 500 \Omega\right)$ Protected against short-circuit
i	8	$\begin{aligned} & \text { AGND } \\ & (24 \mathrm{~V}) \end{aligned}$	Reference (0 V) for the analog outputs	Connected to the ground (frame) through an impedance: $940 \mathrm{k} \Omega$ resistor in parallel with a 22 nF capacitor. Same reference as the one of DGND *
	9	AO2	Analog output 2: motor current	Galvanic isolation Resolution: 11 bits Signal: 0 to $10 \mathrm{~V}(\mathrm{RL} \geq 10 \mathrm{k} \Omega) / 0$ to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA}(\mathrm{RL} \leq 500 \Omega)$ Protected against short-circuit
	10	$\begin{aligned} & \text { AGND } \\ & (24 \mathrm{~V}) \end{aligned}$	Reference (0 V) for the analog outputs	Connected to the ground (frame) through an impedance: $940 \mathrm{k} \Omega$ resistor in parallel with a 22 nF capacitor. Same reference as the one of DGND *
	11	DGND*	Reference (0 V) for the 24 Vdc power supply	Connected to the ground (frame) through an impedance: $940 \mathrm{k} \Omega$ resistor in parallel with a 22 nF capacitor. Same reference as the one of AGND (24 V)
	12	COM	Common point of the digital inputs	
	13	24 Vdc	24 Vdc power supply	24 Vdc power supply, $\pm 8 \%$ Capacity: 500 mA Note: In the models with the 24 Vdc external control power supply (CFW11...O...W...) pin $13 \circ \mathrm{XC1}$ is considered na input, that is, the user must provide a supply for the inverter (for further details refer to Item 7.2.1 Use of External Dynamic Braking Module DBW03 and DBW04 on page 7-4). In all the other models this terminal is an output, i.e., the user has a 24 Vdc power supply available there
	14	COM	Common point of the digital inputs	
	15	DII	Digital input 1 : Start/Stop	6 digital inputs galvanic insulated High level $\geq 18 \mathrm{~V}$ Low level $\leq 3 \mathrm{~V}$ Maximum input voltage $=30 \mathrm{~V}$ Input current: 11 mA @ 24 Vdc
	16	DI2	Digital input 2: Direction of rotation (remote)	
	17	DI3	Digital input 3: no function	
\bigcirc	18	DI4	Digital input 4: no function	
	19	DI5	Digital input 5: Jog (remote)	
	20	D16	Digital input 6: $2^{\text {nd }}$ ramp	
	21	NF1	Digital input 1 DO1 (RL1): no fault	Contact rating: Maximum voltage: 240 Vac Maximum current: 2 A NF - normally closed contact C - common NA - normally open contact
	22	C1		
	23	NA1		
	24	NF2	Digital input 2 DO 2 (RL2): $N>N_{x}$ - speed $>$ P0288	
	25	C2		
	26	NA2		
	27	NF3	Digital input 3 DO3 (RL3): $\mathrm{N}^{*}>\mathrm{N}_{\mathrm{x}}$ - speed reference > P0288	
	28	C3		
	29	NA3		

(b) Digital inputs working as "active low"

Figure 3.16 - (a) and (b) - Signals at connector XC1

NOTE!

In order to use the digital inputs as active low, remove the jumper between $\mathrm{XC1:11}$ and 12 and install it between XC1:12 and 13 .

Figure 3.17-XC1 terminal strip and DIP-switches for selecting the signal type of analog inputs and outputs

As the factory setting, the analog inputs and outputs are adjusted to operate in the 0 to 10 V range, but they can be changed by using the S1 DIP-switch.

Table 3.7 - Configuration of DIP-switches for selecting the signal type of analog inputs and outputs

Signal	Factory Setting Function	DIP Switch	Selection	Factory Setting
Al1	Speed reference (remote)	S1.4	OFF: 0 to 10 V (factory setting) ON: 4 to $20 \mathrm{~mA} / 0$ to 20 mA	OFF
AI2	No function	S1.3	OFF: 0 to $\pm 10 \mathrm{~V}$ (factory setting) ON: 4 to $20 \mathrm{~mA} / 0$ to 20 mA	OFF
AO1	Speed	S1.1	OFF: 4 to $20 \mathrm{~mA} / 0$ to 20 mA ON: 0 to 10 V (factory setting)	ON
AO2	Motor current	S1.2	OFF: 4 to $20 \mathrm{~mA} / 0$ to 20 mA ON: 0 to 10 V (factory setting)	ON

Parameters related to the analog inputs and outputs ($\mathrm{Al} 1, \mathrm{Al} 2, \mathrm{AO} 1$, and AO 2) must be programmed according to the DIP-switches settings and desired values.

Follow instructions below for the proper installation of the control wiring:

1. Wire gauge: $0.5 \mathrm{~mm}^{2}$ (20 AWG) to $1.5 \mathrm{~mm}^{2}$ (14 AWG).
2. Maximum tightening torque: $0.5 \mathrm{~N} . \mathrm{m}(4.50 \mathrm{lbf} . \mathrm{in})$.
3. Use shielded cables for the connections at XCl and run the cables separated from the remaining circuits (power, $110 \mathrm{~V} / 220 \mathrm{Vac}$ control, etc.), as presented in Table 3.8 on page 3-34. If control cables must cross other cables, it must be done perpendicularly among them, keeping a minimum of 5 cm (1.9 in) distance at the crossing point.

NOTE!

Safety Stop function: the inverters with Safety Stop function option (CFW1 1 ...O...Y...) are supplied with control connections to disable Safety Stop function as per Figure 3.19 on page 3-34. For using the Safety Stop function see Section 3.3 SAFETY STOP FUNCTION on page 3-38.

Figure 3.19- Internal control connections to disable Safety Stop function

Table 3.8 - Minimum separation distances between wiring

Cable Length	Minimum Separation Distance
$\leq 30 \mathrm{~m}(100 \mathrm{ft})$	$\geq 10 \mathrm{~cm}(3.94 \mathrm{in})$
$>30 \mathrm{~m}(100 \mathrm{ft})$	$\geq 25 \mathrm{~cm}(3.94 \mathrm{in})$

4. The correct connection of the cable shield is shown in Figure 3.20 on page $3-34$ and Figure 3.21 on page 3-35.

Figure 3.20-Shield connection

5. Relays, contactors, solenoids or coils of electromechanical brakes installed close to the inverter may occasionally generate interferences in the control circuitry. To eliminate this effect, RC suppressors (with AC power supply) or freewheel diodes (with DC power supply) must be connected in parallel to the coils of these devices.

3.2.6 Typical Control Connections

Control connection 1 - Run/Stop function controlled from the keypad (Local Mode).

With this control connection, it is possible to run the inverter in local mode with the factory default settings.

This operation mode is recommended for first-time users, since no additional control connections are required.

For the start-up in this operation mode, please follow instructions listed in Chapter 5 FIRST TIME POWER-UP AND START-UP on page 5-1.

Control connection 2-2-Wire Run/Stop function (Remote Mode).

This wiring example is valid only for the default factory settings and if the inverter is set to remote mode.

With the factory default settings, the selection of the operation mode (local/remote) is performed through the HMI key
 (local mode is default). Set PO220 $=3$ to change the default setting of HMI key to remote mode.

Figure 3.22-XC1 wiring for control connection 2

Control connection 3-3-Wire Start/Stop function.

Enabling the Run/Stop function with 3-wire control.
Parameters to set:
Set DI3 to START.
P0265 = 6 .
Set DI4 to STOP.
P0266 $=7$.

Set P0224 = 1 (DIx) for 3-wire control in Local mode.
Set P0227 = 1 (DIx) for 3-wire control in Remote mode.

Set the Forward/Reverse selection by using digital input 2 (DI2).
Set P0223 $=4$ for Local Mode or P0226 $=4$ for Remote Mode.
S1 and S2 are Start (NO contact) and Stop (NC contact) pushbuttons respectively.
The speed reference can be provided through the analog input (as in control connection \# 2), through the keypad (as in control connection \# 1) or through other available source.

Figure 3.23-XC1 wiring for control connection 3

Control connection 4 - Forward/Reverse.

Enabling the Forward/Reverse function.
Parameters to set:
Set DI3 to FORWARD RUN.
P0265 = 4 .
Set DI4 to REVERSE RUN.
P0266 $=5$.

When the Forward/Reverse function is set, it will be active either in Local or Remote mode. At the same time, the HMI keys O and (1) will remain always inactive (even if P0224 = 0 or P0227 = 0).

The direction of rotation is determined by the Forward run and Reverse run inputs.
Clockwise direction for Forward run and counterclockwise for Reverse run.
The speed reference can be provided by any source (as in the Control connection 3).

Figure 3.24-XC1 wiring for control connection 4

3.3 SAFETY STOP FUNCTION

Frequency inverters that have the optional SRBXX board implement the STO (Safe Torque Off) safety function. For detailed information, refer to the Safety Stop Function Installation, Configuration and Operation Guide.

3.4 INSTALLATION ACCORDING TO THE EUROPEAN DIRECTIVE OF ELECTROMAGNETIC COMPATIBILITY

The CFW-11 inverters with frame sizes F, G and H feature internal RFI filter to reduce the electromagnetic interference.

These inverters, when properly installed, meet the requirements of the electromagnetic compatibility directive "EMC Directive 2014/30/EU".

The CFW-11 inverter series has been designed only for industrial applications. Therefore, the emission limits of harmonic currents defined by the standards EN 61000-3-2 and EN 61000-3-2/A14 are not applicable.

ATTENTION!

For using models with internal RFI filters in IT networks follow the instructions on Item 3.2.3.1.2 IT Networks on page 3-23.

3.4.1 Conformal Installation

For the conformal installation use:

1. Shielded output cables (motor cables) with the shield connected at both ends, motor and inverter, by means of a low impedance to high frequencies connection.

Keep the separation distance to the other cables according to the Table 3.6 on page 3-27 indication refer to Item 3.2.3 Power Connections on page 3-19, for more information.

Maximum motor cable length and conduced and radiated emission levels according to the Table 3.9 on page 3-40.

If a lower conducted emission level category is wished, then an external RFI filter must be used at the inverter input. For more information (RFI filter commercial reference, motor cable length and emission levels) refer to the Table 3.9 on page 3-40.
2. Shielded control cables, keeping the separation distance to other cables according to the Item 3.2.5 Control Connections on page 3-30.
3. Inverter grounding according to the Item 3.2.4 Grounding Connections on page 3-28.

3.4.2 Standard Definitions

IEC/EN 61800-3: "Adiustable Speed Electrical Power Drives Systems"

- Environment:

First Environment: includes domestic premises, it also includes establishments directly connected without intermediate transformer to a low-voltage power supply network which supplies buildings used for domestic purposes.
Example: houses, apartments, commercial installations, or offices located in residential buildings.

Second Environment: includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes.
Example: industrial area, technical area of any building supplied by a dedicated transformer.

- Categories:

Category C1: inverters with a voltage rating less than 1000 V and intended for use in the First Environment.

Category C2: inverters with a voltage rating less than 1000 V , intended for use in the First Environment, not provided with a plug connector or a movable installations, and installed and commissioned by a professional. Note: a professional is a person or organization familiar with the installation and/or commissioning of inverters, including the EMC aspects.

Category C3: inverters with a voltage rating less than 1000 V and intended for use in the Second Environment only (not designed for use in the First Environment).

Category C4: inverters with a voltage rating equal to or greater than 1000 V , or with a current rating equal to or greater than 400 Amps, or intended for use in complex systems in the Second Environment.

EN 5501 1: "Threshold values and measuring methods for radio interference from industrial, scientific and medical (ISM) high-frequency equipment"

Class B: equipment intended for use in the low-voltage power supply network (residential, commercial, and light-industrial environments).

Class A1: equipment intended for use in the low-voltage power supply network. Restricted distribution.
Note: must be installed and commissioned by a professional when applied in the low-voltage power supply network.

Class A2: equipment intended for use in industrial environments.

3.4.3 Emission and Immunity Levels

Table 3.9 - Emission and immunity levels

EMC Phenomenon	Basic Standard	Level
Emission:		
Mains terminal disturbance voltage Frequency range: 150 kHz to 30 MHz	IEC/EN61800-3 (2004) + Al (2011)	It depends on the inverter model and on the motor cable lenght. Refer to Table 3.10 on page 3-41
Electromagnetic radiation disturbance Frequency range: 30 MHz to 1000 MHz		
Immunity:		
Electrostatic discharge (ESD)	IEC 61000-4-2 (2008)	4 kV for contact discharge and 8 kV for air discharge
Fast transient-burst	IEC 61000-4-4 (2012)	$2 \mathrm{kV} / 5 \mathrm{kHz}$ (coupling capacitor) power input cables $1 \mathrm{kV} / 5 \mathrm{kHz}$ control cables, and remote keypad cables $2 \mathrm{kV} / 5 \mathrm{kHz}$ (coupling capacitor) motor output cables
Conducted radio-frequency common mode	IEC 61000-4-6 (2013)	0,15 to $80 \mathrm{MHz} ; 10 \mathrm{~V} ; 80 \% \mathrm{AM}(1 \mathrm{kHz})$ Motor cables, control cables, and remote keypad cables
Surge immunity	IEC 61000-4-5 (2014)	$1,2 / 50 \mu \mathrm{~s}, 8 / 20 \mu \mathrm{~s}$ 1 kV line-to-line coupling 2 kV line-to-ground coupling
Radio-frequency electromagnetic field	IEC 61000-4-3 (2010)	$\begin{aligned} & 80 \mathrm{MHz} \text { to } 1000 \mathrm{GHz} \\ & 10 \mathrm{~V} / \mathrm{m} \\ & 1,4 \mathrm{GHz} \text { to } 2 \mathrm{GHz} \\ & 3 \mathrm{~V} / \mathrm{m} \\ & 2 \mathrm{GHz} \text { to } 2,7 \mathrm{GHz} \\ & 1 \mathrm{~V} / \mathrm{m} \\ & 80 \% \mathrm{AM}(1 \mathrm{kHz}) \\ & \hline \end{aligned}$

Table 3.10-Conducted and radiated emission levels

Inverter Model	Without External RFI Filter		With External RFI Filter		
	Conducted Emission - Maximum Motor Cable Length	Radiated Emission	External RFI Filter Part Number (Manufacturer Epcos)	Conducted Emission Maximum Motor Cable Length	Radiated Emission
	Category C3	Category without Metallic Cabinet		Category C2	Category with Metallic Cabinet
CFW1 10242 T 4	100 m	C3 ${ }^{11}$	B84143-B0250-S020	$50 \mathrm{~m}^{(3)}$	C3
CFW110312T4	100 m	C3 ${ }^{(1)}$	B84143-B0320-S020	$50 \mathrm{~m}^{(3)}$	C3
CFW110370T4	100 m	C3 ${ }^{(1)}$	B84143-B0400-S020	$50 \mathrm{~m}^{(3)}$	C3
CFW110477T4	100 m	C3 ${ }^{(1)}$	B84143-B0600-S020	$50 \mathrm{~m}^{(3)}$	C3
CFW110515T4	100 m	C3 ${ }^{(1)}$	B84143-B0600-S020	$50 \mathrm{~m}{ }^{(3)}$	C3
CFW110601T4	100 m	C3 ${ }^{(1)}$	B84143-B0600-S020	$50 \mathrm{~m}^{(3)}$	C3
CFW110720T4	100 m	C3 ${ }^{(1)}$	B84143-B1000-S020	$50 \mathrm{~m}^{(3)}$	C3
CFW110760T4	100 m	C4 ${ }^{(2)}$	B84143-B1000-S020	-	-
CFW110795T4	100 m	$\mathrm{C} 4{ }^{(2)}$	B84143-B1000-S80	-	-
CFW110877T4	100 m	$\mathrm{C} 4{ }^{(2)}$		-	-
CFW111062T4	100 m	C4 ${ }^{(2)}$	B84143-B1250-S80	-	-
CFW111141T4	100 m	C4 ${ }^{(2)}$		-	-

(1) With toroidal core in the three line power supply cables (the three cables connected to R/L1, S/L2 and T/L3 must pass through a single toroidal core). Example: TDK PN: PC4OU120x160×20 ironxclube PN: U126×91×20-3F3. If the installation of the inverter is done inside the cabinet with attenuation of 10 dB in the frequency range $[30 ; 50] \mathrm{MHz}$, the toroidal core is not necessary.
(2) For further details, contact WEG.
(3) Minimum operating frequency of 2.5 Hz .

4 HMI

This chapter contains the following information:

- HMI keys and their functions.

Ø Display indications.

■ Parameter structure.

4.1 INTEGRAL KEYPAD - HMI-CFW-11

The integral keypad can be used to operate and program (view / edit all parameters) of the CFW- 11 inverter.

The inverter keypad navigation is similar to the one used in cell phones and the parameters can be accessed in numerical order or through groups (Menu).

Figure 4.1-HMI keys

Battery:

NOTE!

The battery is necessary only to keep the internal clock operation when the inverter stays without power. If the battery is completely discharged or if it is not installed in the keypad, the displayed clock time will be invalid and an alarm condition "A181-Invalid clock time" will be indicated every time the inverter is powered up.

The life expectation of the battery is of approximately 10 years. When necessary, replace the battery by another of the CR2032 type.

Figure 4.2 - HMI battery replacement

NOTE!

At the end of the battery useful life, please do not discard batteries in your waste container, but use a battery disposal site.

Installation:

■ The keypad can be installed or removed from the inverter with or without AC power applied to it.

- The HMI supplied with the product can also be used for remote command of the inverter. In this case, use a cable with male and female D-Sub9 (DB-9) connectors wired pin to pin (mouse extension type) or a market standard Null-Modem cable. Maximum length of $10 \mathrm{~m}(33 \mathrm{ft})$. It is recommended the use of the M3 55.8 standoffs supplied with the product. Recommended torque: 0.5 N.m (4.50 lbf.in).

When the inverter is energized, the display goes into the monitoring mode. For the factory setting, the screen similar to Figure 4.3 on page $4-4$ will be displayed. By setting proper parameters, other variables can be shown in the monitoring mode or the content of the parameters can be presented as bar graphs or larger characters as shown in Figure 4.3 on page 4-4.

(a) Monitoring screen with the factory default settings

(b) Example of a monitoring screen with bar graphs

(c) Example of a monitoring screen displaying a parameter with a larger font size

Figure 4.3 - (a) to (c) - Keypad monitoring modes

4.2 PARAMETER STRUCTURE

When the right soff key ("MENU") is pressed in the monitoring mode, the display shows the first 4 groups of parameters. An example of how the groups of parameters are organized is presented in Table 4.1 on page $4-5$. The number and name of the groups may change depending on the firmware version used. For further details on the existent groups for the used firmware version, refer to the programming manual.

Table 4.1-Groups of parameters

Level 0		Level 1		Level 2		Level 3
Monitoring	00	ALL PARAMETERS				
	01	PARAMETER GROUPS	20	Ramps		
			21	Speed References		
			22	Speed Limits		
			23	V/f Control		
			24	Adjust. V/f Curve		
			25	VVW Control		
			26	V/f Current Limit.		
			27	V/f DC Volt. Limit.		
			28	Dynamic Braking		
			29	Vector Control	90	Speed Regulator
					91	Current Regulator
					92	Current Regulator
					93	I/F Control
					94	Self-Tuning
					95	Torque Curr. Limit.
					96	DC Link Regulator
			30	HMI		
			31	Local Command		
			32	Remote Command		
			33	3-Wire Command		
			34	FWD/REV Run Comm.		
			35	Zero Speed Logic		
			36	Multispeed		
			37	Electr. Potentiom.		
			38	Analog Inputs		
			39	Analog Outputs		
			40	Digital Inputs		
			41	Digital Outputs		
			42	Inverter Data		
			43	Motor Data		
			44	FlyStart/Ride-Thru		
			45	Protections		
			46	PID Regulator		
			47	DC Braking		
			48	Skip Speed		
			49	Communication	110	Local/Rem Config.
					111	Status/Commands
					112	CANopen/DeviceNet
					113	Serial RS-232/485
					114	Anybus
					115	Profibus DP
			50	SoftPLC		
			51	PLC		
			52	Trace Function		
	02	ORIENTED START-UP				
	03	CHANGED PARAMETERS				
	04	BASIC APPLICATION				
	05	SELF-TUNING				
	06	BACKUP PARAMETERS				
	07	I/O CONFIGURATION	38	Analog Inputs		
			39	Analog Outputs		
			40	Digital Inputs		
			41	Digital Outputs		
	08	FAULT HISTORY				
	09	READ ONLY PARAMS				

5 FIRST TIME POWER-UP AND START-UP

This chapter describes how to:

- Check and prepare the inverter before power-up.
- Power-up the inverter and check the result.

- Set the inverter for the operation in the $\mathrm{V} / \neq \mathrm{mode}$ based on the power supply and motor information by using the Oriented Start-Up routine and the Basic Application group.

NOTE!

In order to use the inverter in VVW or vector control modes, and for other available functions, refer to the CFW- 11 programming manual.

ATTENTION!

Firmware version V5.00 or higher CANNOT be used on inverters with control board revision prior to "D".
Any firmware version prior to V5.00 CANNOT be used on inverters with control board revision "D" or higher.

5.1 START-UP PREPARATION

The inverter must have been already installed according to the recommendations listed in Chapter 3 INSTALLATION AND CONNECTION on page 3-1. The following recommendations are applicable even if the application design is different from the suggested control connections.

DANGER!

Always disconnect the main power supply before performing any inverter connection.

DANGER!

Débranchez toujours l'alimentation principale avant d'effectuer une connexion sur le variateur.

1. Check if power, grounding, and control connections are correct and firmly secured.
2. Remove from inside the inverter or the cabinet all the materials left behind from the installation work.
3. Verify the motor connections and if its voltage and current are within the inverter rated values.
4. Mechanically uncouple the motor from the load:

If the motor cannot be uncoupled, make sure that any speed direction (forward or reverse) will not result in personnel injury and/or equipment damage.
5. Close the inverter or cabinet covers.
6. Measure the power supply voltage and verify if it is within the allowed range, according to the Chapter 8 TECHNICAL SPECIFICATIONS on page 8-1.
7. Apply power to the input:

Close the input disconnect switch.
8. Check the result of the first time power-up:

The keypad should display the standard monitoring mode (Figure 4.3 on page 4-4), and the status LED should be steady green.

5.2 START-UP

The start-up procedure for the V / f is described in three simple steps by using the Oriented Start-up routine and the Basic Application group.

Steps:

1. Set the password for parameter modification.
2. Execute the Oriented Start-up routine.
3. Set the parameters of the Basic Application group.

5.2.1 P0000 Password Setting

5.2.2 Oriented Start-Up

There is a group of parameters named "Oriented Start-up", which makes the inverter settings easier. The parameter P0317 from this group allows entering the Oriented Start-up routine.

The Oriented Start-Up routine presents the main parameters on the HMI in a logical sequence, so that their setting, according to the operation conditions, prepares the inverter for the operation with the used line and motor.

In order to enter an Oriented Start-up routine, follow the sequence presented in Figure 5.2 on page 5-5, first changing P0317 = 1, and then setting the other parameters as they are displayed on the HMI.

Setting the parameters in the Oriented Start-Up routine causes the automatic content modification of the other parameters and/or internal inverter variables.

During the Oriented Start-up routine, the message "Config" will be displayed at the top left corner of the HMI display.

Step	Action/Result	Display Indication	
1	- Monitoring mode		
- Press "Menu"			
(right soft key)			

Figure 5.2-Oriented Start-up

5.2.3 Basic Application Parameter Settings

After running the Oriented Start-up routine and properly setting the parameters, the inverter is ready to operate in the V / f mode.

The inverter has a number of other parameters that allow its adaptation to the most different applications. This manual presents some basic parameters, whose setting is necessary in the majority of cases. To make this task easier, there is a group named Basic Application. A summary of the parameters contained in this group is presented in the Table 5.1 on page 5-7. Also a group of read-only parameters shows the value of the most important inverter variables such as voltage, current, etc. The main parameters contained in this group are listed in Table 5.2 on page 5-8. For further details, refer to the CFW- 11 programming manual.

Follow steps outlined in Figure 5.3 on page 5-6 to set the parameters of the Basic Application group.

The procedure for start-up in the V / f operation mode is finished after setting these parameters.

Figure 5.3-Setting parameters of the basic application group

Table 5.1 - Parameters contained in the basic application group

Parameter	Name	Description	Adjustable Range	Factory Setting	User Setting
P0100	Acceleration Time	- It defines the time to accelerate linearly from 0 up to the maximum speed (P0134) - If set to 0.0 s , it means no acceleration ramp	0.0 to 999.0 s	20.0 s	
P0101	Deceleration Time	- It defines the time to decelerate linearly from the maximum speed (PO134) up to 0 - If set to 0.0 s , it means no deceleration ramp	0.0 to 999.0 s	20.0 s	
P0133	Minimum Speed	- They defines the minimum and the maximum values of the speed reference when the drive is enabled - These values are valid for any reference source	0 to 18000 rpm	90 rpm (60 Hz motor) 75 rpm (50 Hz motor)	
P0134	Maximum Speed			1800 rpm (motor 60 Hz) 1500 rpm (motor 50 Hz)	
P0135	Max. Output Current (V/f control mode current limitation)	- It avoids motor stalling under torque overload condition during the acceleration or deceleration - The factory default setting is for "Ramp Hold": if the motor current exceeds the value set at P0135 during the acceleration or deceleration, the motor speed will not be increased (acceleration) or decreased (deceleration) anymore. When the motor current reaches a value below the programmed in P0135, the motor speed is again increased or decreased - Other options for the current limitation are available. Refer to the CFW-11 programming manual	$\begin{aligned} & 0.2 \times \mathrm{I}_{\text {nom-HD }} \text { to } \\ & 2 \times \mathrm{I} \end{aligned}$	$1.5 \times \mathrm{I}_{\text {nom-HD }}$	
P0136	Manual Torque Boost	- It operates in low speeds, modifying the output voltage x frequency curve to keep the torque constant - It compensates the voltage drop at the motor stator resistance. This function operates in low speeds increasing the inverter output voltage to keep the torque constant in the V / f mode - The optimal setting is the smallest value of P0136 that allows the motor to start satisfactorily. An excessive value will considerably increase the motor current at low speeds, and may result in a fault (F048, F051, F071, F072, F078 or F183) or alarm (A046, A047, A050 or A1 10) condition	0 to 9	1	

Table 5.2 - Main read only parameters

Parameter	Description	Adjustable Range
P0001	Speed Reference	0 to 18000 rpm
P0002	Motor Speed	0 to 18000 rpm
P0003	Motor Current	0.0 to 4500.0 A
P0004	DC Link Voltage (Ud)	0 to 2000 V
P0005	Motor Frequency	0.0 to 1020.0 Hz
P0006	VFD Status	$0=$ Ready $1=$ Run 2
		$2=$ Undervoltage 3 Fault
		$4=$ Self-tuning 5
P0007 Conguration		
P0009	Motor Voltage	Motor Torque
P0049	Present Fault	$7=$ STO

Parameter	Description	Adjustable Range
P0050	Last Fault	0 to 999
P0051	Last Fault Day/Month	00/00 to 31/12
P0052	Last Fault Year	00 to 99
P0053	Last Fault Time	00:00 to 23:59
P0054	Second Fault	0 to 999
P0055	Second Flt. Day/Month	00/00 to 31/12
P0056	Second Fault Year	00 to 99
P0057	Second Fault Time	00:00 to 23:59
P0058	Third Fault	0 to 999
P0059	Third Fault Day/Month	00/00 to 31/12
P0060	Third Fault Year	00 to 99
P0061	Third Fault Time	00:00 to 23:59
P0062	Fourth Fault	0 to 999
P0063	Fourth Flt. Day/Month	00/00 to 31/12
P0064	Fourth Fault Year	00 to 99
P0065	Fourth Fault Time	00:00 to 23:59
P0066	Fifth Fault	0 to 999
P0067	Fifth Fault Day/Month	00/00 to 31/12
P0068	Fifth Fault Year	00 to 99
P0069	Fifth Fault Time	00:00 to 23:59
P0070	Sixth Fault	0 to 999
P0071	Sixth Fault Day/Month	00/00 to 31/12
P0072	Sixth Fault Year	00 to 99
P0073	Sixth Fault Time	00:00 to 23:59
P0074	Seventh Fault	0 to 999
P0075	Seventh Flt.Day/Month	00/00 to 31/12
P0076	Seventh Fault Year	00 to 99
P0077	Seventh Fault Time	00:00 to 23:59
P0078	Eighth Fault	0 to 999
P0079	Eighth Flt. Day/Month	00/00 to 31/12
P0080	Eighth Fault Year	00 to 99
P0081	Eighth Fault Time	00:00 to 23:59
P0082	Ninth Fault	0 to 999
P0083	Ninth Fault Day/Month	00/00 to 31/12
P0084	Ninth Fault Year	00 to 99
P0085	Ninth Fault Time	00:00 to 23:59
P0086	Tenth Fault	0 to 999
P0087	Tenth Fault Day/Month	00/00 to 31/12
P0088	Tenth Fault Year	00 to 99
P0089	Tenth Fault Time	00:00 to 23:59
P0090	Current At Last Fault	0.0 to 4000.0 A
P0091	DC Link At Last Fault	0 to 2000 V
P0092	Speed At Last Fault	0 to 18000 rpm
P0093	Reference Last Fault	0 to 18000 rpm
P0094	Frequency Last Fault	0.0 to 300.0 Hz
P0095	Motor Volt.Last Fault	0 to 2000 V
P0096	Dlx Status Last Fault	0000h to 00FFh
P0097	DOx Status Last Fault	0000h to 001 Fh

5.3 DATE AND TIME SETTING

Step	Action/Result	Display Indication
1	- Monitoring mode - Press "Menu" (right soft key)	
2	- Group "00 ALL PARAMETERS" is already selected	
3	Group "01 PARAMETER GROUPS" is selected Press "Select"	
4	- A new list of groups is displayed and group "20 Ramps" is selected - Press until you reach group "30 HMI"	Ready C LOC Grpm 26 Ramps 21 SpeedReferences 22 Speed Limits 23 V/F Control Return 16:16 Select
5	- Group "30 HMI" is selected - Press "Select"	Ready C LOC Gripm 27 VF DC Volt. Limit. 28 Dunamic Braking 29 Vector Control BE HMI Return
6	- Parameter "Day P0194" is already selected - If needed, set PO194 according to the actual day. To do so, press "Select" and then, and \qquad or to change P0194 value - Follow the same steps to set parameters "Month P0195" to "Seconds P0199"	
7	- Once the setting of P0199 is over, the Real Time Clock is now updated - Press "Return" (left soft key)	Ready CLOC GrPMi Minutes PQ198: 11 Seconcls 34 Paig9: 34 Return 18:11 Select
8	- Press "Return"	Ready C LOC Grait 27 V/F DC Volt. Limit. 28 Dunamic Braking 29 Vector Control BG Hil Return 18:11 Select
9	- Press "Return"	
10	- The display is back to the monitoring mode	

Figure 5.4 - Date and time setting

5.4 BLOCKING PARAMETERS MODIFICATION

To prevent unauthorized or unintended parameters modification, parameter P0000 should be set to a value different from 5. Follow the same procedures described in Item 5.2.1 P0000 Password Setting on page 5-3.

5.5 HOW TO CONNECT A PC

NOTES!

- Always use a standard host/device shielded USB cable. Unshielded cables may lead to communication errors.
- Recommended cables: Samtec:

USBC-AM-MB-B-B-S-1 (1 meter).
USBC-AM-MB-B-B-S-2 (2 meters).
USBC-AM-MB-B-B-S-3 (3 meters).

- The USB connection is galvanically isolated from the mains power supply and from other internal inverter high voltages. However, the USB connection is not isolated from the protective ground (PE). Use an isolated notebook for the USB connection or a desktop connected to the same protective ground (PE) of the inverter.

Install the SuperDrive G2 software in order to control the motor speed, and view or edit the inverter parameters through a personal computer (PC).

Basic procedures for transferring data from the PC to the inverter:

1. Install the SuperDrive G2 software in the PC.
2. Connect the PC to the inverter through an USB cable.
3. Start SuperDrive G2.
4. Choose "Open" and the files stored in the PC will be displayed.
5. Select the file.
6. Use the command "Write Parameters to the Drive".

- All parameters are now transferred to the inverter.

For further information on the SuperDrive G2 software, refer to the SuperDrive manual.

5.6 FLASH MEMORY MODULE

Location as presented in Figure 2.4 on page 2-10.

Functions:

- Store a copy of the inverter parameters.
- Transfer parameters stored in the FLASH memory to the inverter.
- Transfer firmware stored in the FLASH memory to the inverter.
- Store the program created with SoftPLC.

Whenever the inverter is powered up, this program is transferred to the RAM memory located in the inverter control board and executed.

Refer to the CFW- 11 programming manual and to SoftPLC manual for further details.

ATTENTION!

Before installing or removing the FLASH memory module, disconnect the inverter power supply and wait for the complete discharge of the capacitors.

6 TROUBLESHOOTING AND MAINTENANCE

This chapter presents:

- A lists of all the faults and alarms that may occur.
- The possible causes of each fault and alarm.
- A lists of the most frequent problems and corrective actions.
- Instructions for periodic inspections and preventive maintenance
 on the equipment.

6.1 OPERATION OF FAULTS AND ALARMS

When a fault is detected (FXXX) is detected:

凹 The PWM pulses are blocked.
\square The keypad displays the fault code and description.

■ The "STATUS" LED starts flashing red.

凹 The output relay set to "NO FAULT" opens.
\square Some data is saved in the control circuit EEPROM memory:

- Keypad and EP (Electronic Pot) speed references, in case the function "Reference backup" is enabled in P0120.
- The "FAULT" or alarm potentiometer code that occurred (shifts the last nine previous faults and alarms).
- The state of the motor overload function integrator.
- The state of the operating hours counter (P0043) and the powered-up hours counter (P0042).

For the inverter to return to normal operation right after the occurrence of a fault, it is necessary to reset it, which can be done as follows:

Removing the power supply and reapplying it (power-on reset).

ஏ Pressing the HMI O key (manual reset).

■ Through the "Reset" soft key.

■ Automatically by setting P0340 (auto-reset).

च Through a digital input: Dlx $=20$ (P0263 to P0270).

When an alarm situation（AXXX）is detected：

■ The keypad displays the alarm code and description．

■ The＂STATUS＂LED changes to yellow．

■ The PWM pulses are not blocked（the inverter remains operating）．

6．2 FAULTS，ALARMS，AND POSSIBLE CAUSES

Table 6.1 －Faults，alarms and possible causes

Fault／Alarm	Description	Possible Causes
F006 Imbalance or Input Phase Loss	Mains voltage imbalance too high or phase missing at the input power supply． Note： －If the motor is unloaded or operating with reduced load，this fault may not occur． －Fault delay is set at parameter P0357． P0357＝ 0 disables the fault．	Phase missing at the inverter input power supply． Input voltage imbalance＞ 5% ． Pre－charge circuit fault．
F021 DC Bus Undervoltage	DC bus undervoltage condition occurred．	Ø The input voltage is too low and the DC bus voltage dropped below the minimum permitted value（monitor the value at Parameter P0004）： Ud $<385 \mathrm{~V}$－for supply voltage $380 \mathrm{~V}(\mathrm{P} 0296=1)$ ． $\mathrm{Ud}<405 \mathrm{~V}$－for supply voltage 400－415 V（P0296＝2）． $\mathrm{Ud}<446 \mathrm{~V}$－for supply voltage 440－460 V（P0296＝3）． Ud $<487 \mathrm{~V}$－for supply voltage $480 \mathrm{~V}(\mathrm{P} 0296=4)$ ． Phase loss at the input power supply． Pre－charge circuit failure． Parameter P0296 was set to a value above the power supply rated voltage．
F022 DC Bus Overvoltage	DC bus overvoltage condition occurred．	Ø The input voltage is too high and the DC bus voltage surpassed the maximum permitted value： $\mathrm{Ud}>800 \mathrm{~V}$－for $380-480 \mathrm{~V}$ models（P0296＝1，2， 3 or 4）． च Inertia of the driven－load is too high or deceleration time is too short． Parameters P0151 or P0153 or P0185 set to high．
F030 Power Module U Fault	Power Module U IGBTs desaturation．	ワ Short－circuit between motor phases U and V or U and W ．
F034 Power Module V Fault	Power Module V IGBTs desaturation．	\square Short－circuit between motor phases V and U or V and W ．
F038 Power Module W Fault	Power Module W IGBT desaturation．	【 Short－circuit between motor phases W and U or W and V．
F042 DB IGBT Fault	Desaturation of Dynamic Braking IGBT occured．	Short－circuit between the connection cables of the dynamic braking resistor．
A046 High Load on Motor	Load is too high for the used motor． Note： It may be disabled by setting P0348＝0 or 2 ．	Settings of P0156，P0157，and P0158 are too low for the used motor． Motor shaft load is excessive．
A047 IGBT Overload Alarm	An IGBT overload alarm occurred． Note： It may be disabled by setting P0350 $=0$ or 2 ．	》 Inverter output current is too high．
F048 IGBT Overload Fault	An IGBT overload fault occurred．	》 Inverter output current is too high．

Fault/Alarm	Description	Possible Causes
A050 U Phase IGBT High Temperature	The IGBT NTC temperature sensors detected a high temperature alarm. Note: It may be disabled by setting P0353 $=2$ or 3 .	High inverter surrounding air temperature (>50 $\left.{ }^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)\right)$. and high output current. Blocked or defective fan. Very dirty heatsink.
F051 U Phase IGBT Overtemperature	The IGBT NTC temperature sensors detected an overtemperature fault.	
A053 V Phase IGBT High Temperature	The IGBT NTC temperature sensors detected a high temperature alarm. Note: It may be disabled by setting P0353 $=2$ or 3 .	
F054 V Phase IGBT Overtemperature	The IGBT NTC temperature sensors detected an overtemperature fault.	
A056 W Phase IGBT High Temperature	The IGBT NTC temperature sensors detected a high temperature alarm. Note: It may be disabled by setting P0353 $=2$ or 3 .	
F057 W Phase IGBT Overtemperature	The IGBT NTC temperature sensors detected an overtemperature fault.	
F062 ${ }^{(7)}$ Thermal Imbalance	Fault of power module temperature imbalance.	- The temperature difference between IGBTs modules of the same phase ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) was above $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$. The temperature difference between IGBTs modules of the same phase ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) was above $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. The temperature difference between rectifier modules of different phases (R and S, R and T, S and T) was above $15^{\circ} \mathrm{C}\left(59{ }^{\circ} \mathrm{F}\right)$.
F067 Encoder / Motor Wiring is Inverted	Fault related to the phase relation of the encoder signals if PO2O2 $=4$ and $\mathrm{PO} 408=2,3$ or 4 . Note: - It is not possible to reset this fault during the selffuning. - It is not possible to reset this fault. - In this case, turn off the power supply, solve the problem, and then turn it on again.	Output motor cables U, V, W are inverted. Encoder channels A and B are inverted. Encoder was not properly mounted.
F071 Output Overcurrent	Output overcurrent fault.	Excessive load inertia or acceleration time too short. Settings of P0135 or P0169, P0170, P0171, and P0172 are too high.
F072 Motor Overload	Fault of motor current imbalance. Note: It may be disabled by setting P0348 $=0$ or 3 .	- Settings of P0156, P0157, and P0158 are too low for the used motor. Excessive load at the motor shaft.
F074 Ground Fault	Ground overcurrent fault. Note: It may be disabled by setting P0343 $=0$.	Short-circuit to the ground at one or more of the output phases. Motor cable capacitance is too large, resulting in current peaks at the output. ${ }^{(5)}$
F076 Motor Current Imbalance	Fault of motor current imbalance. Note: It may be disabled by setting P0342 $=0$.	- Loose connection or interrupted wiring between motor and inverter. V Vector control lost orientation. V Vector control with inverted encoder wiring or inverted motor connection.
F077 DB Resistor Overload	The dynamic braking resistor overload protection tripped.	Excessive load inertia or deceleration time too short. Excessive load at the motor shaft. Parameter P0154 and P0155 incorrect setting.
F078 Motor Overtemperature	Fault related to the PTC temperature sensor installed in the motor. Note: - It may be disabled by setting P0351 = 0 or 3 . - It is necessary to set an analog input / output to the PTC function.	Excessive load at the motor shaft. Too heavy duty cycle (too many starts/stops per minute). Too high motor surrounding air temperature. Loose connection or short-circuit (resistance $<60 \Omega$) in the wiring connected to the motor thermistor. Motor thermistor is not installed. Blocked motor shaft.
F079 Encoder Signal Fault	Lack of encoder signals.	Broken wires between the motor encoder and the option and the encoder interface board. Defective encoder.
F080 CPU Watchdog	Microcontroller watchdog fault.	■ Electrical noise.
F082 Copy Function Fault	Fault while copying parameters.	》 Communication problem with the HMI.

Fault／Alarm	Description	Possible Causes
F084 Auto－diagnosis Fault	Auto－diagnosis fault．	マ Internal inverter circuitry defect．
A088 Communication Lost	A failure in the communication between the HMI and the control board．	■ Loose keypad cable connection． －Electrical noise in the installation．
A090 External Alarm	External alarm via digital input． Note： It is necessary to set a digital input for＂no external alarm＂．	Open wiring at digital inputs（DI1 to DI8）programmed for＂no external alarm＂．
F091 External Fault	External fault via digital input． Note： It is necessary to set a digital input to＂no external fault＂．	Open wiring at digital inputs（DI1 to DI8）programmed for＂no external fault＂．
F099 Invalid Current Offset	Current measurement circuit is measuring a wrong value for null current．	】 Defect in the inverter internal circuitry．
A110 High Motor Temperature	Alarm related to the PTC temperature sensor installed in the motor． Note： －It may be disabled by setting P0351＝0 or 2 ． －It is necessary to set an analog input／output to the PTC function．	Excessive load at the motor shaft． Too heavy duty cycle（too many starts／stops per minute）． Too high motor surrounding air temperature． Motor thermistor is not installed． Blocked motor shaft．
A128 Timeout for Serial Communication	Indicates that the inverter stopped receiving valid telegrams within a certain time interval． Note： It may be disabled by setting P0314 $=0.0 \mathrm{~s}$ ．	Check the wiring and grounding installation． Make sure the inverter has sent a new telegram within the time interval set at P0314．
A129 Anybus is Offline	Alarm that indicates interruption of the Anybus－CC communication．	च The PLC has entered the idle state． －Programming error．Master and slave set with a different number of I／O words． Ø Communication with master has been lost（broken cable， unplugged connector，etc．）．
A130 Anybus Access Error	Alarm that indicates an access error to the Anybus－CC communication module．	Ø Defective，unrecognized，or incorrectly installed Anybus－ CC module． Conflict with a WEG option board．
A133 CAN Not Powered	Alarm indicating that the power supply was not connected to the CAN controller．	Broken or loose cable． Power supply is off．
A134 Bus Off	Inverter CAN interface has entered the bus－off state．	Incorrect baud－rate． Two nodes configured with the same address in the network． Wrong cable connection（inverted signals）．
A135 CANopen Communication Error	Alarm that indicates a communication error．	】 Communication problems． Wrong master configuration／settings． Incorrect configuration of the communication objects．
A136 Idle Master	Network master has entered the idle state．	PLC in IDLE mode． Bit of the PLC command register set to zero（0）．
A137 DNet Connection Timeout	DeviceNet I／O connection timeout alarm．	One or more allocated I／O connections have entered the timeout state．
A138 ${ }^{(1)}$ Profibus DP Interface in Clear Mode	It indicates that the inverter received a command from the Profibus DP network master to enter the clear mode．	Verify the network master status，making sure it is in execution mode（Run）． Refer to the Profibus DP communication manual for more information．
A139（1） Offline Profibus DP Interface	It indicates an interruption in the communication between the Profibus DP network master and the inverter．	V Verify whether the network master is correctly configured and operating normally． V Verify the network installation in a general manner－cable routing，grounding． Ø Refer to the Profibus DP communication manual for more information．
A140 ${ }^{(1)}$ Profibus DP Module Access Error	It indicates an error in the access to the Profibus DP communication module data．	V Verify whether the Profibus DP module is correctly fit into the slot 3 ． Refer to the Profibus DP communication manual for more information．
F150 Motor Overspeed	Overspeed fault． It is activated when the real speed exceeds the value of P0134 x（ $100 \%+\mathrm{P} 0132$ ）for more than 20 ms ．	Wrong settings of P0161 and／or P0162． Problem with the hoist－type load．
F151 FLASH Memory Module Fault	FLASH memory module（MMF－03）fault．	Defective FLASH memory module． FLASH memory module is not connected properly．

Fault／Alarm	Description	Possible Causes
A152 Internal Air High Temperature	Alarm indicating that the internal air temperature is too high． Note： It may be disabled by setting P0353 $=1$ or 3 ．	Defective internal fan（if existent）and high output current． High temperature inside the cabinet（ $>45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ ）．
F153 Internal Air Overtemperature	Internal air overtemperature fault．	
A156（9） Undertemperature	Only 1 sensor indicates temperature below $-30^{\circ} \mathrm{C}$ （ $-22^{\circ} \mathrm{F}$ ）．	》 Surrounding air temperature $\leq-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)$ ．
F156 Undertemperature	Undertemperature fault（below－ $\left.30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)^{(8)}\right)$ in the IGBTs or rectifier measured by the temperature sensors．	》 Surrounding air temperature $\leq-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)^{(8)}$ ．
F160 Safety Stop Relays	Safety Stop relay fault．	One of the relays is defective or it does not have +24 Vdc applied to its coil．
F161 Timeout PLC1 1 CFW－1 1	7 Refer to the PLC11－01 module programming manual．	
A162 Incompatible PLC Firmware		
A163 All Broken Wire	It indicates that the All current signal $(4-20 \mathrm{~mA}$ or $20-4 \mathrm{~mA}$ ）is out of the 4 to 20 mA range．	Broken Al1 cable． Bad contact at the signal connection to the terminal strip．
A164 Al2 Broken Wire	It indicates that the Al2 current signal $(4-20 \mathrm{~mA}$ or $20-4 \mathrm{~mA}$ ）is out of the 4 to 20 mA range．	Broken Al2 cable． Bad contact at the signal connection to the terminal strip．
A165 Al3 Broken Wire	It indicates that the AI3 current signal $(4-20 \mathrm{~mA}$ or $20-4 \mathrm{~mA}$ ）is out of the 4 to 20 mA range．	Broken Al3 cable． Bad contact at the signal connection to the terminal strip．
A1 66 Al4 Broken Wire	It indicates that the Al4 current signal $(4-20 \mathrm{~mA}$ or $20-4 \mathrm{~mA}$ ）is out of the 4 to 20 mA range．	Broken Al4 cable． Bad contact at the signal connection to the terminal strip．
$\text { F174 }{ }^{(6)}$ Left Fan Speed Fault	Heatsink left fan speed fault．	Dirt on the blades and in the bearings of the fan． Defective fan． Defective fan power supply connection．
F175 ${ }^{(2)}$ Center Fan Speed Fault	Heatsink center fan speed fault．	Dirt on the blades and in the bearings of the fan． Defective fan． Defective fan power supply connection．
F176 Right Fan Speed Fault	Heatsink right fan speed fault．	Dirt on the blades and in the bearings of the fan． Defective fan． Defective fan power supply connection．
A177 Fan Replacement	Heatsink fan replacement alarm （P0045＞ 50000 hours）． Note： This function may be disabled by setting P0354 $=0$ ．	Ø The maximum number of operating hours for the heatsink fan has been reached．
F179 Heatsink Fan Speed Fault	Heatsink fan speed feedback fault． Note： This function may be disabled by setting P0354 $=0$ ．	Dirt on the blades and in the bearings of the fan． －Defective fan． \square Defective fan power supply connection．
A181 Invalid Clock Value	Invalid clock value alarm．	－It is necessary to set date and time at parameters from P0194 to P0199． Keypad battery is discharged，defective，or not installed．
F182 Pulse Feedback Fault	Indicates a fault at the feedback from the output pulses．	－No motor connected or the motor connected to the inverter output is too small． \square Possible defect on the internal circuits of the inverter． Possible solutions： Reset inverter and try again． Set P0356＝ 0 and try again．
F183 IGBT Overload＋ Temperature	Overtemperature related to the IGBTs overload protection．	■ High surrounding air temperature． Operation with overload at frequencies below 10 Hz ．
F185 Pre－charge Contactor Fault	It indicates fault at the pre－charge contactor．	■ Pre－charge circuit defect．
$\text { F186 }{ }^{(3)}$ Sensor 1 Temperature Fault	It indicates a temperature fault at the sensor 1 ．	V Motor high temperature．
F187 ${ }^{(3)}$ Sensor 2 Temperature Fault	It indicates a temperature fault at the sensor 2.	》 Motor high temperature．
$\mathrm{F} 188^{(3)}$ Sensor 3 Temperature Fault	It indicates a temperature fault at the sensor 3 ．	V Motor high temperature．

Fault／Alarm	Description	Possible Causes
F189 ${ }^{(3)}$ Sensor 4 Temperature Fault	It indicates a temperature fault at the sensor 4.	ワ Motor high temperature．
F190 ${ }^{(3)}$ Sensor 5 Temperature Fault	It indicates a temperature fault at the sensor 5.	【 Motor high temperature．
A191 ${ }^{(3)}$ Sensor 1 Temperature Alarm	It indicates a temperature alarm at the sensor 1 ．	Motor high temperature． A problem in the wiring connecting the sensor to the IOE－01（02 or 03）．
A192 ${ }^{(3)}$ Sensor 2 Temperature Alarm	It indicates a temperature alarm at the sensor 2 ．	Motor high temperature． A problem in the wiring connecting the sensor to the IOE－01（02 or 03）．
A193 ${ }^{(3)}$ Sensor 3 Temperature Alarm	It indicates a temperature alarm at the sensor 3 ．	Motor high temperature． A problem in the wiring connecting the sensor to the IOE－01（02 or 03）．
A194 ${ }^{(3)}$ Sensor 4 Temperature Alarm	It indicates a temperature alarm at the sensor 4.	Motor high temperature． A problem in the wiring connecting the sensor to the IOE－01（02 or 03）．
A195（3） Sensor 5 Temperature Alarm	It indicates a temperature alarm at the sensor 5 ．	Motor high temperature． A problem in the wiring connecting the sensor to the IOE－01（02 or 03）．
A196 ${ }^{(3)}$ Sensor 1 Cable Alarm	Temperature sensor 1 cable alarm．	ワ Shorted temperature sensor．
A197 ${ }^{(3)}$ Sensor 2 Cable Alarm	Temperature sensor 2 cable alarm．	『 Shorted temperature sensor．
A198 ${ }^{(3)}$ Sensor 3 Cable Alarm	Temperature sensor 3 cable alarm．	ワ Shorted temperature sensor．
A199 ${ }^{(3)}$ Sensor 4 Cable Alarm	Temperature sensor 4 cable alarm．	ワ Shorted temperature sensor．
A200 ${ }^{(3)}$ Sensor 5 Cable Alarm	Temperature sensor 5 cable alarm．	凹 Shorted temperature sensor．
F228 Serial Communication Timeout	W Refer to the RS232／RS485 Serial communication manual．	
F229 Anybus Offline	W Refer to the Anybus－CC communication manual．	
F230 Anybus Access Error		
F233 CAN Bus Power Failure	》 Refer to the CANopen communication manual and／or the DeviceNet communication manual．	
$\begin{aligned} & \text { F234 } \\ & \text { Bus Off } \end{aligned}$		
F235 CANopen Communication Error	V Refer to the CANopen communication manual．	
F236 Master Idle	V Refer to the DeviceNet communication manual．	
F237 DeviceNet Connection Timeout		
F238 ${ }^{(1)}$ Profibus DP Interface in Clear Mode	It indicates that the inverter received a command from the Profibus DP network master to enter the clear mode．	Verify the network master status，making sure it is in execution mode（Run）． The fault indication will occur if P0313 $=5$ ． Refer to the Profibus DP communication manual for more information．
$\text { F239 }{ }^{(1)}$ Offline Profibus DP Interface	It indicates an interruption in the communication between the Profibus DP network master and the inverter．	Verify whether the network master is correctly configured and operating normally． Verify the network installation in a general manner－cable routing，grounding． The fault indication will occur if P0313 $=5$ ． Refer to the Profibus DP communication manual for more information．
$\text { F240 }{ }^{(1)}$ Profibus DP Module Access Error	It indicates an error in the access to the Profibus DP communication module data．	Verify whether the Profibus DP module is correctly fit into the slot 3 ． The fault indication will occur if P0313 $=5$ ． Refer to the Profibus DP communication manual for more information．

Fault/Alarm	Description	Possible Causes
F416 ${ }^{(7)}$ IGBT Current Imb. Fault	Fault of current imbalance on the IGBTs.	IGBTs of the same phase presented a current imbalance above 15%.
A417 (7) Thermal Imbalance	The temperature difference between IGBT modules of the same phase $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ was above $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$.	The temperature difference between IGBT modules of different phases (U and V, U and W, V and W) was above $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$. The temperature difference between rectifier modules of different phases (R and S , R and T, S and T) was above $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$.
F418 ${ }^{(7)}$ Air Control Overtemperature	Fault of overtemperature of the internal air on the control board.	Temperature of the internal air of the control board is above $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$.
A419 ${ }^{(7)}$ Control Air Temperature High Alarm	Alarm of overtemperature of the internal air on the control board.	When the temperature of the internal air of the control board is above $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$.
$\begin{aligned} & \text { A700 }{ }^{(4)} \\ & \text { Disconnected HMI } \end{aligned}$	Alarm or fault related to the HMI disconnection.	RTC function block has been activated in the SoftPLC applicative and the HMI is disconnected from the inverter.
F701 ${ }^{\text {(4) }}$ Disconnected HMI		
A702 ${ }^{(4)}$ Disabled Inverter	Alarm indicating that the General Enable command is not active.	- The SoftPLC Run/Stop command is equal to Run or a movement block has been enable while the inverter is general disabled.
A704 ${ }^{(4)}$ Two Enabled Movements	Two movements have been enabled.	V It occurs when two or more movement blocks are enabled simultaneously.
A706 ${ }^{(4)}$ Speed Reference not Programmed for SoftPLC	Speed reference not programmed for SoftPLC.	- It occurs when a movement block has been enabled and the speed reference has not been configured for SoftPLC (check P0221 and P0222).

Models where they can occur and additional notes:
(1) With a Profibus DP module connected into the slot 3 (XC43).
(2) All the frame sizes G and H models.
(3) With an IOE-01 (02 or 03) module connected into the slot 1 (XC41).
(4) All the models with a SoftPLC applicative.
(5) Very long motor cables (longer than 100 meters) present a high parasite capacitance against the ground. The circulation of parasite currents through those capacitances may cause the ground fault circuit activation and thus disabling the inverter with F074, immediately after the inverter enabling.
(6) CFW $110370 T 4$, CFW1 10477 T4, and all the frame sizes G and H models.
(7) Only frame size H .
(8) Below $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$ for frame size H .
(9) Only for models of frame sizes F and G.

NOTE!

The range from P0750 to P0799 is destined to the SoftPLC applicative user faults and alarms.

6.3 SOLUTIONS FOR THE MOST FREQUENT PROBLEMS

Table 6.2 - Solutions for the most frequent problems

Problem	Point to be Verified	Corrective Action
Motor does not start	Incorrect wiring	1. Check all power and control connections. For instance, the digital inputs set to start/stop, general enable, or no external error must be connected to the 24 Vdc or to DGND* terminals (refer to Figure 3.16 on page 3-31)
	Analog reference (if used)	1. Check if the external signal is properly connected 2. Check the status of the control potentiometer (if used)
	Incorrect settings	1. Check if the parameter values are correct for the application
	Fault	1. Check whether the inverter is disabled due to a fault condition 2. Make sure that the terminals $\mathrm{XC1:13}$ and $\mathrm{XC1:11}$ are not shorted (short-circuit at the 24 Vdc power supply)
	Stalled motor	1. Decrease the motor overload 2. Increase P0136, P0137 (V/f), or P0169/P0170 (vector control)
Motor speed oscillates	Loose connections	1. Stop the inverter, turn off the power supply, check and tighten all the power connections 2. Check all the internal connections of the inverter
	Defective speed reference potentiometer	1. Replace the potentiometer
	Oscillation of the external analog reference	1. Identify the cause of the oscillation. If it is caused by electrical noise, use shielded cables or separate them from the power and control wiring
	Incorrect settings (vector control)	1. Check parameters P0410, P0412, P0161, P0162, P0175, and P0176 2. Refer to the programming manual
Too high or too low motor speed	Incorrect settings (reference limits)	1. Check whether the values of P0133 (minimum speed) and P0134 (maximum speed) are properly set for the used motor and application
	Control signal from the analog reference (if used)	1. Check the level of the reference control signal 2. Check the settings (gain and offset) of parameters P0232 to P0249
	Motor nameplate	1. Check whether the used motor matches the application
Motor does not reach the rated speed, or motor speed starts oscillating around the rated speed (Vector Control)	Settings	1. Decrease P0180 2. Check P0410
Display is off	Keypad connections	1. Check the inverter keypad connection
	Power supply voltage	1. Rated values must be within the limits specified below: 380-480 V power supply: - Minimum: 323 V - Maximum: 528 V
	Mains supply fuses open	1. Replace the fuses
Motor does not operate in the field weakening region (Vector Control)	Settings	1. Decrease P0180
Low motor speed and P0009 = P0169 or P0170 (motor operating with torque limitation), for P0202 $=4-$ vector with encoder	Encoder signals are inverted or power connections are inverted	1. Check signals $A-\bar{A}, B-\bar{B}$, refer to the incremental encoder interface manual. If signals are properly wired, invert two of the output phases. For instance U and V

6.4 INFORMATION NECESSARY FOR CONTACTING TECHNICAL SUPPORT

NOTE!

For technical support and servicing, it is important to have the following information in hand:
■ Inverter model.
\square Serial number, manufacturing date, and hardware revision that are listed in the product nameplate (refer to the Section 2.4 CFW-11 IDENTIFICATION LABELS on page 2-12).
■ Installed software version (check parameter P0023).

- Application data and inverter settings.

6.5 PREVENTIVE MAINTENANCE

DANGER!

\square Always turn off the mains power supply before touching any electrical component associated to the inverter.

■ High voltage may still be present even after disconnecting the power supply.
To prevent electric shock, wait at least 10 minutes after turning off the input power for the complete discharge of the power capacitors.
\square Always connect the equipment frame to the protective ground (PE). Use the adequate connection terminal at the inverter.

DANGER!

■ Débranchez toujours l'alimentation principale avant d'entrer en contact avec un appareil électrique associé au variateur.

■ Des tensions élevées peuvent encore être présentes, même après déconnexion de l'alimentation.
\square Pour éviter les risques d'électrocution, attendre au moins 10 minutes après avoir coupé I'alimentation d'entrée pour que les condensateurs de puissance soient totalement déchargées.
\square Raccordez toujours la masse de l'appareil à une terre protectrice (PE). Utiliser la borne de connexion adéquate du variateur.

ATTENTION!

The electronic boards have electrostatic discharge sensitive components.
Do not touch the components or connectors directly. If necessary, first touch the grounded metallic frame or wear a ground strap.

Do not perform any withstand voltage test! If necessary, consult WEG.

The inverters require low maintenance when properly installed and operated. The Table 6.3 on page 6-9 presents the main procedures and time intervals for preventive maintenance. The Table 6.4 on page 6-10 provides recommended periodic inspections to be performed every 6 months after the inverter start-up.

Table 6.3 - Preventive maintenance

Maintenance	Interval	Instructions
Fan replacement	After 50000 operating hours ${ }^{(1)}$	$\begin{array}{l}\text { Replacement procedure showed in Figure 6.1 on page } \\ 6-11\end{array}$
Keypad battery replacement	Every 10 years	Refer to the Chapter 4 HMI on page 4-1.
$\begin{array}{l}\text { Electrolytic } \\ \text { capacitors } \\ \text { (2) }\end{array}$	$\begin{array}{l}\text { If the inverter is } \\ \text { stocked (not being } \\ \text { used): "Reforming" }\end{array}$	$\begin{array}{l}\text { Every year from the manufacturing date printed } \\ \text { on the inverter identification label (refer to the } \\ \text { Section 2.4 CFW-11 IDENTIFICATION LABELS } \\ \text { on page 2-12) }\end{array}$

for at least one hour. Then, disconnect the power supply

and wait at least 24 hours before using the inverter

(reapply power)\end{array}\right]\)
(1) The inverters are set at the factory for automatic fan control (P0352 = 2), which means that they will be turned on only when the heatsink temperature exceeds a reference value. Therefore, the operating hours of the fan will depend on the inverter usage conditions (motor current, output frequency, cooling air temperature, etc.). The inverter stores the number of fan operating hours in the parameter P0045. When this parameter reaches 50000 operating hours, the keypad display shows the alarm A177.
(2) Valid for frame sizes F and G only.

Table 6.4 - Recommended periodic inspections - Every 6 months

Component	Abnormality	Corrective Action
Terminals, connectors	Loose screws	Tighten
	Loose connectors	
Fans/cooling system	Dirty fans	Cleaning
	Abnormal acoustic noise	Replace the fan. Refer to the Figure 6.1 on page 6-11 for the removal of the fan. Install the new fan in the reverse sequence of the removal Check the fan connections
	Blocked fan	
	Abnormal vibration	
	Dust in the cabinet air filter	Cleaning or replacement
Printed circuit boards	Accumulation of dust, oil, humidity, etc	Cleaning
	Odor	Replacement
Power module/power connections	Accumulation of dust, oil, humidity, etc	Cleaning
	Loose connection screws	Tighten
DC bus capacitors (DC link)	Discoloration/odor/electrolyte leakage	Replacement
	Expanded or broken safety valve	
	Frame expansion	
Power resistors	Discoloration	
	Odor	
Heatsink	Dust accumulation	Cleaning
	Dirty	

6.5.1 Cleaning Instructions

When it is necessary to clean the inverter, follow the instructions below:

Ventilation system:

D Disconnect the inverter power supply and wait at least 10 minutes.
\boxtimes Remove the dust from the cooling air inlet by using a soft brush or a flannel.

- Remove the dust from the heatsink fins and from the fan blades by using compressed air.

Electronic boards:

\square Disconnect the inverter power supply and wait at least 10 minutes.
\square Remove the dust from the electronic board by using an anti-static brush or an ion air gun (Charges Burtes Ion Gun - reference A6030-6DESCO).
\square If necessary, remove the boards from the inverter.

■ Always wear a ground strap.

7 OPTION KITS AND ACCESSORIES

This chapter presents:
\square The option kits that can be integrated to the inverter from the factory:

- Safety Stop.

- External 24 Vdc power supply for control and keypad.
- Instructions for the proper use of the option kits.
\square The accessories that can be integrated to the inverters.

Instructions for the installation, operation, and programming of the accessories are described in their own manuals and are not present in this chapter.

7.1 OPTION KITS

7.1.1 Safety Stop Function

Inverters with the following codification CFW11...O...Y.... Refer to Section 3.3 SAFETY STOP FUNCTION on page 3-38.

7.1.2 24 Vdc External Control Power Supply

Inverters with code CFW 1 1XXXXXXOW.

The use of this option kit is recommended with communication networks (Profibus, DeviceNet, etc.), since the control circuit and the network communication interface are kept active (with power supply and responding to the network communication commands) even in the event of main power supply interruption.

Inverters with this option have a built-in DC/DC converter with a 24 Vdc input that provides adequate outputs for the control circuit. Therefore, the control circuit power supply will be redundant, i.e., it can be provided either by a 24 Vdc external power supply (connection as shown in Figure 7.1 on page 7-2) or by the standard internal switched mode power supply of the inverter.

Observe that the inverters with the external 24 Vdc power supply option use terminals $\mathrm{XC1:11}$ and 13 as the input for the external power supply and no longer as the output like in the standard inverter. (Figure 7.1 on page 7-2).

In case of interruption of the external 24 Vdc power supply, the digital inputs/outputs and analog outputs will no longer be fed, even if the mains power is on. Therefore, it is recommended to keep the 24 Vdc power supply always connected to the terminals XC1:11 and 13 .

The keypad displays warnings indicating the inverter status: whether the 24 Vdc power source is connected, whether the mains power source is connected, etc.

Figure 7.1-External 24 Vdc power supply capacity and connection terminals

NOTE!

A class 2 power supply must be used in order to comply with the UL508C standard.

7.2 ACCESSORIES

The accessories are installed in the inverter easily and quickly using the "Plug and Play" concept. When the accessory is inserted into the slot, the control circuitry identifies its model and displays the installed accessory code in P0027 or P0028. The accessory must be installed with the inverter power supply off.

Part number and model of each available accessory are presented in Table 7.1 on page 7-3. The accessories can be ordered separately and will be shipped in individual packages containing the components and the manual with detailed instructions for the product installation, operation, and programming.

ATTENTION!

Only one module at a time can be fitted into each slot (1, 2, 3, 4 or 5).

Table 7.1 - Accessory models

WEG Part Number	Name	Description	Slot	Identification Parameters	
				P0027	P0028
Control Accessories for Installation in the Slots 1, 2 and 3					
11008162	IOA-01	IOA module: 1 voltage/current analog input (14 bits); 2 digital inputs; 2 voltage/current analog outputs (14 bits); 2 open-collector digital outputs	1	FD--	----
11008099	IOB-01	IOB module: 2 isolated analog inputs (voltage/current); 2 digital inputs; 2 isolated analog outputs (voltage/current) (the programming of the outputs is identical as in the standard CFW-11); 2 open-collector digital outputs	1	FA--	----
11126674	IOC-01	IOC module with 8 digital inputs and 4 relay outputs (use with SoftPLC)	1	C1	----
11126730	IOC-02	IOC module with 8 digital inputs and 8 NPN open collector digital outputs (use with SoftPLC)	1	C5	----
11820111	IOC-03	IOC module with 8 digital inputs and 7 PNP open collector digital outputs	1	C6	----
11126732	IOE-01	Input module with 5 PTC type sensors	1	25--	----
11126735	IOE-02	Input module with 5 PT100 type sensors	1	23--	----
11126750	IOE-03	Input module with 5 KTY84 type sensors	1	27--	----
11008100	ENC-01	5 to 12 Vdc incremental encoder module, 100 kHz , with an encoder signal repeater	2	--C2	----
11008101	ENC-02	5 to 12 Vdc incremental encoder module, 100 kHz	2	--C2	----
11008102	RS485-01	RS485 serial communication module (Modbus)	3	----	CE--
11008103	RS232-01	RS232C serial communication module (Modbus)	3	----	CC--
11008104	RS232-02	RS232C serial communication module with DIP-switches for programming the microcontroller FLASH memory	3	--	CC--
11008105	CAN/RS485-01	CAN and RS485 interface module (CANopen/DeviceNet/Modbus)	3	----	CA--
11008106	CAN-01	CAN interface module (CANopen/DeviceNet)	3	----	CD--
11045488	PROFIBUS DP-01	Profibus DP communication module	3	----	C9
11008911	PLC11-01	PLC module	$\begin{gathered} 1,2 \\ \text { and } 3 \end{gathered}$	--	$--x x^{(1)}{ }^{(3)}$
11094251	PLC11-02	PLC module	$\begin{gathered} 1,2 \\ \text { and } 3 \end{gathered}$	----	$--x x^{(1)}(3)$
Anybus-CC Accessories for Installation in the Slot 4					
11008158	DEVICENET-05	DeviceNet interface module	4	----	$--\mathrm{xx}{ }^{(2)}(3)$
10933688	ETHERNET/IP-05	Ethernet/IP interface module	4	----	$--x x^{(2)}(3)$
11550476	MODBUSTCP-05	Modbus TCP interface module	4	----	$--x x^{(2)}(3)$
11550548	PROFINETIP-05	PROFINET IO interface module	4	----	$--x x^{(2)}(3)$
11008107	PROFDP-05	Profibus DP interface module	4	----	$--x x^{(2)}(3)$
14926615	ETHERCAT-05	EtherCAT communication module	4	----	$--x x^{(2)}(3)$
11008161	RS485-05	RS485 (passive) interface module (Modbus)	4	----	$--x x^{(2)}(3)$
11008160	RS232-05	RS232 (passive) interface module (Modbus)	4	----	$--x x^{(2)}(3)$
Flash Memory Module for Installation in the Slot 5 - Factory Settings Included ${ }^{(5)}$					
11719952	MMF-03	FLASH memory module	5	----	--xx ${ }^{(6)}$
Stand-alone HMI, Blank Cover, and Frame for Remote Mounted HMI					
11008913	HMI-01	Stand-alone HMI ${ }^{(4)}$	HMI	-	-
11010521	RHMIF-01	Remote HMI frame kit IP65	-	-	-
11010298	HMID-01	Blank cover for the HMI slot	HMI	-	-
10950192	HMI CAB-RS-1M	1 m serial remote keypad cable set	-	-	-
10951226	HMI CAB-RS-2M	2 m serial remote keypad cable set	-	-	-
10951223	HMI CAB-RS-3M	3 m serial remote keypad cable set	-	-	-
10951227	HMI CAB-RS-5M	5 m serial remote keypad cable set	-	-	-
10951240	HMI CAB-RS-7.5M	7.5 m serial remote keypad cable set	-	-	-
10951239	HMI CAB-RS-10M	10 m serial remote keypad cable set	-	-	-
Miscellaneous					
10960846	CONRA-01	Control rack (containing the CC11 control board)	-	-	-
10960847	CCS-01	Control cable shielding kit (supplied with the product)	-	-	-
11417558	KN1F-01	Nemal kit for the frame size F	-	-	-
11417559	KN1G-01	Nemal kit for the frame size G	-	-	-
11337634	KMF-01	Frame size F movement kit	-	-	-
11337714	KMG-01	Frame size G movement kit	-	-	-
10794631	$\begin{gathered} \text { DBW030380 } \\ \text { D3848SZ } \end{gathered}$	Dynamic braking module DBW03	-	-	-
13166838	$\begin{gathered} \text { DBW040380 } \\ \text { D3848SZ } \\ \hline \end{gathered}$	Dynamic braking module DBW04	-	-	-

(1) Refer to the PLC module manual.
(2) Refer to the Anybus-CC communication manual.
(3) Refer to the programming manual.
(4) Use DB-9 pin, male-to-female, straight-through cable (serial mouse extension type) for connecting the keypad to the inverter or Null-Modem standard cable. Maximum cable length: $10 \mathrm{~m}(33 \mathrm{ft})$.
Examples:

- Mouse extension cable - $1.80 \mathrm{~m}(6 \mathrm{ft})$; Manufacturer: Clone.
- Belkin pro series DB9 serial extension cable 5 m (17 ft); Manufacturer: Belkin.
- Cables Unlimited PCM195006 cable, 6 ft DB9 m/f; Manufacturer: Cables Unlimited.
(5) Inverters with serial number below 1011361739 use MMF-01 control card.
(6) The MMF-03 module has a reserved space for the user (for example: write the application soffware version SoffPLC).

7.2.1 Use of External Dynamic Braking Module DBW03 and DBW04

The braking module can be added externally to any model, and especially to the models of frame sizes F, G and H, which do not feature built-in braking IGBT.

This module is connected to the DC link terminals and the braking resistor must be connected to the braking module terminals.

See electrical diagram example for the frame sizes F, G and H in Figure 3.9 on page 3-20 and Figure 3.10 on page 3-21.

See also DBW03 and DBW04 instructions manual for detailed information.

For frame sizes F and G it's recommended to use DBW03 model.

For frame size H it's recommended to use DBW04 model.

NOTE!

Dynamic braking in models from frame sizes F, G and H:

- For accessing the DC link connections it's necessary to remove top cover. See Figure 3.13 on page 3-26.
- The maximum rms braking currents on DC link terminals of standard models in frame sizes F, G and H are the following:
Frame size F: 143 Amps-rms
Frame size G: 216 Amps-rms
Frame size H : rated DC current according Table 8.2 on page 8-3.

8 TECHNICAL SPECIFICATIONS

This chapter describes the technical specifications（electric and mechanical）of frame sizes F，G and H of the CFW－ 11 inverter line．

8．1 POWER DATA

Power Supply：

】 Voltage tolerance：-15% to $+10 \%$ of the nominal voltage．

『 Maximum rated voltage： 480 V for models $380 \ldots 480 \mathrm{~V}$ for altitudes up to $2000 \mathrm{~m}(6.600 \mathrm{ft})$ ．For higher altitudes，the voltage derating will be 1.1% for each $100 \mathrm{~m}(330 \mathrm{ft})$ above $2000 \mathrm{~m}(6.600 \mathrm{ft})$－maximum altitude： $4000 \mathrm{~m}(13.200 \mathrm{ft})$ ．

『 Frequency： $50 / 60 \mathrm{~Hz}(48 \mathrm{~Hz}$ to 62 Hz$)$ ．
－Phase imbalance：$\leq 3 \%$ of the rated phase－to－phase input voltage．

『 Overvoltage according to Category III（EN 61010／UL 508C／IEC／EN 61800－5－1）．

■ Transient voltage according to Category III．

凹 Maximum of 60 connections per hour（1 per minute）．

■ Efficiency：typical value in nominal condition $\geq 98 \%$ class IE2 according to IEC61800－9－2．

■ Typical input power factor：
－ 0.94 for models with three－phase input in the rated condition．

■ $\operatorname{Cos} \phi$（displacement factor）：>0.98 ．

Table 8.1-Technical specifications of the CFW-11 inverter series frame sizes F, G and H models at rated switching frequencies

Table 8.2 - Technical Specifications of frame sizes F, G and H DC version fed from 436 to 713 Vdc (equivalent to a rectified 380 to 480 Vac three-phase voltage) for switching

Model			$\begin{array}{\|c\|} \hline \text { CFW 1 } 1 \\ 0242 \text { T } 4 \\ \text {..DC.. } \end{array}$	$\begin{gathered} \text { CFW11 } \\ 0312 \text { T } 4 \\ \text {..DC.. } \end{gathered}$	$\begin{gathered} \text { CFW11 } \\ \text { 0370 T } 4 \\ \text {..DC.. } \end{gathered}$	$\begin{gathered} \text { CFW11 } \\ 0477 \text { T } 4 \\ \text {..DC.. } \end{gathered}$	$\begin{gathered} \text { CFW11 } \\ 0515 \text { T } 4 \\ \text {..DC.. } \end{gathered}$	$\begin{gathered} \text { CFW11 } \\ 0601 \text { T } 4 \\ \text {..DC.. } \end{gathered}$	CFW 11 0720 T 4 ..DC.	CFW 11 0760 T 4 ..DC	$\begin{gathered} \text { CFW } 11 \\ 0795 \text { T } 4 \\ \text {..DC.. } \end{gathered}$	$\begin{gathered} \text { CFW11 } \\ 0877 \text { T } 4 \\ \text {..DC.. } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CFW } 11 \\ 1062 \text { T } 4 \\ \text {..DC.. } \end{array}$	CFW11 1141 T 4 ..DC..
Frame Size			F				G				H			
Number of Power Phases			DC											
Use with Normal Duty (ND) Cycle	Rated Output Current ${ }^{(1)}$		242	312	370	477	515	601	720	760	795	877	1062	1141
	Overload Current ${ }^{(2)}$ [Arms]	1 min	266	343	407	525	567	662	792	836	875	965	1168	1255
		3 s	363	468	555	716	773	900	1080	1140	1193	1316	1593	1712
	Rated Switching Frequency [kHz]		2	2	2	2	2	2	2	2	2	2	2	2
	Maximum Motor ${ }^{(3)}$ [$\mathrm{HP} / \mathrm{kW}$]		200/150	250/185	300/220	400/300	400/300	500/370	600/440	650/480	700/515	750/560	950/700	1000/750
	Rated Input Current		327	421	500	644	695	811	972	1026	1073	1184	1434	1540
	Dissipated Power [W]	Surface Mounting ${ }^{(4)}$	2098	3228	3679	4866	5235	5543	6672	8070	7625	8502	9438	10229
		Flange Mounting ${ }^{(5)}$	515	693	750	1028	1140	1334	1366	1253	705	709	714	718
Use with Heavy Duty (HD) Cycle	Rated Output Current ${ }^{(1)}$		211	242	312	370	477	515	560	600	637	715	855	943
	Overload Current ${ }^{(2)}$ [Arms]	1 min	317	363	468	555	716	773	840	900	956	1073	1283	1415
		3 s	422	484	624	740	954	1030	1120	1200	1274	1430	1710	1886
	Rated Switching Frequency [kHz]		2	2	2	2	2	2	2	2	2	2	2	2
	Maximum Motor ${ }^{(3)}$ [HP/kW]		175/132	200/150	250/185	300/220	400/300	400/300	450/330	500/370	550/400	600/440	750/560	800/590
	Rated Input Current [Arms]		285	327	421	500	644	695	756	810	860	965	1154	1273
	Dissipated Power [W]	Surface Mounting ${ }^{(4)}$	1814	2481	3071	3743	4842	4719	5142	6341	6041	6805	7453	8271
		Flange Mounting ${ }^{(5)}$	442	533	615	794	1062	1137	1060	1328	698	701	703	707
Surrounding air Temperature [${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$]			$\begin{gathered} -10 \ldots 45^{\circ} \mathrm{C} \\ \left(14 \ldots 113^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$						$\begin{gathered} -10 \ldots 40^{\circ} \mathrm{C} \\ \left(14 \ldots 104^{\circ} \mathrm{F}\right) \end{gathered}$					
RFI Filter			Built-in											
Weight [kg (lb)]			97	100	102	107	151	151	156	156	213	213	220	220
Availability of Option Kits that can be Integrated into the Product (refer to the smart code in the Section 2.5 HOW TO SPECIFY THE CFW- 11 MODEL (SMART CODE) on page 2-14)	Safety Stop		Yes											
	24 Vdc External Control Power Supply		Yes											

(1) Rated current in permanent duty under the following conditions:

- Recommended switching frequencies.
- For operation with a switching frequency of 2.5 kHz (applicable to models $242 \ldots 760 \mathrm{~A}$ only), a 10% derating must be applied to the current values specified in Table 8.1 on page 8-2.
- For operation with a switching frequency of 5 kHz (applicable to models $242 \ldots 760 \mathrm{~A}$ only), the rated output current must be derated according to Table 8.3 on page 8-5.
It is not possible to use the CFW- 11 inverter models with frames F, G and H with a switching frequency of 10 kHz .
- Ambient temperature around the inverter: $-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ for models $242 \mathrm{~A} \ldots 601 \mathrm{~A}$ and $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ for models $720 \mathrm{~A} . . .1141 \mathrm{~A}$. For operation of the inverter in environments with higher ambient temperatures around the inverter, refer to Item 3.1.1 Environmental Conditions on page 3-1.
- Air relative humidity: 5% to 90% non-condensing.
- Altitude: 1000 m ; above 1000 m up to 4000 m , output current derating of 1% for each 100 m above 1000 m .
- Environment with pollution degree 2 (as per EN50178 and UL508C).
(2) One overload each 10 minutes. Table 8.1 on page $8-2$ contains just two points of the overload curve (activation time of 1 min and 3 s). The complete overload curves of the IGBTs for ND and HD are presented below.
Depending on the inverter operational conditions such as surrounding air temperature and output frequency, the maximum time for operation of the inverter with overload may be reduced.
(3) The motor outputs are only for guiding purposes for WEG motor $460 \mathrm{~V}, 4$ poles. The proper sizing must be done according to the rated current of the motors used.
(4) The specified dissipated powers are valid for rated operating conditions, that is, for rated output current and switching frequency.
(5) The dissipated powers for flange mounting correspond to the total losses of the inverter minus the losses on the power modules (IGBT and rectifier).

(b) IGBTs overload curve for the Heavy Duty (HD) cycle

Figure 8.1 - (a) and (b) - Overload curves for the IGBTs

Table 8.3 - Technical specifications of the CFW-1 1 inverter series frame sizes F and G models at 5 kHz switching frequency

Model			CFW1 1 0242T4	$\begin{aligned} & \text { CFW11 } \\ & \text { 0312T4 } \end{aligned}$	CFW1 1 0370T4	CFW1 1 0477T4	$\begin{aligned} & \text { CFW11 } \\ & \text { 0515T4 } \end{aligned}$	CFW1 1 $0601 T 4$	CFW11 0720T4	CFW11 0760T4
Frame Size			F				G			
Number of Power Phases			3ϕ							
Use with Normal Duty (ND) Cycle	Rated output current ${ }^{(1)}$ [Arms]		175	225	266	343	343	390	468	494
	Overload Current [Arms]	1 min	193	248	293	377	377	429	515	543
		3 s	263	338	399	515	515	585	702	741
	Rated Switching Frequency [kHz]		5	5	5	5	5	5	5	5
	Maximum Motor ${ }^{(2)}$ [HP/kW]		150/110	175/132	200/150	270/200	270/200	300/220	400/300	400/300
	Rated Input Current [Arms]		175	225	266	343	343	390	468	494
	Dissipated Power [W]	Surface Mounting ${ }^{(3)}$	2154	2770	3274	4222	4222	4801	5761	6081
		Flange Mounting ${ }^{(4)}$	819	1053	1245	1605	1605	1825	2190	2312
Use with Heavy Duty (HD) Cycle	Rated Output Current ${ }^{(1)}$ [Arms]		152	175	225	266	318	335	364	390
	Overload Current [Arms]	1 min	228	263	338	400	477	503	546	585
		3 s	304	350	450	532	636	670	728	780
	Switching Frequency [kHz]		5	5	5	5	5	5	5	5
	Maximum Motor ${ }^{(2)}$ [HP/kW]		125/90	150/110	175/132	200/150	250/185	270/200	300/220	300/220
	Rated Input Current [Arms]		152	175	225	266	318	335	364	390
	Dissipated Power [W]	Surface Mounting ${ }^{(3)}$	1871	2154	2770	3274	3914	4124	4481	4801
		Flange Mounting ${ }^{(4)}$	711	819	1053	1245	1488	1568	1703	1825
Surrounding Air Temperature [${ }^{\circ} \mathrm{C}$] ${ }^{(1)}$			$-10 . . .40^{\circ} \mathrm{C}$							
RFI Filter			Built-in							
Weight [kg (lb)]			130	132	135	140	204	207	215	215
Availability of option kits that can be integrated into the product (refer to smart code in the Section 2.5 HOW TO SPECIFY THE CFW-11 MODEL (SMART CODE) on page 2-14)	Safety Stop		Yes							
	24 Vdc External Control Power Supply		Yes							

(1) Steady state rated current in the following conditions:
-5 kHz switching frequency.

- Surrounding air temperature as specified in the table. For higher temperatures, limited to $50^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$, the output current must be derated by 2% for each ${ }^{\circ} \mathrm{C}$ above the maximum specified temperature.
- Air relative humidity: 5% to 90% non-condensing.
- Altitude: $1000 \mathrm{~m}(3.300 \mathrm{ft})$. Above $1000 \mathrm{~m}(3.300 \mathrm{ft})$ up to $4000 \mathrm{~m}(13.200 \mathrm{ft})$ the output current must be derated by 1% for each $100 \mathrm{~m}(330 \mathrm{ft})$ above $1000 \mathrm{~m}(3.300 \mathrm{ft})$.
- Ambient with pollution degree 2 (according to EN50178 and UL508C).
(2) The motor outputs are only for guiding purposes for WEG motor $460 \mathrm{~V}, 4$ poles. The proper sizing must be done according to the rated current of the motors used.
(3) The dissipated powers are valid for rated operating conditions, that is, for rated output current and switching frequency.
(4) The dissipated powers for flange mounting correspond to the total losses of the inverter minus the losses on the power modules (IGBT and rectifier).

8.2 ELECTRONICS/GENERAL DATA

Control	Method	Voltage source Type of control: - V/f (Scalar) - VVW: Voltage Vector Control - Vector control with encoder - Sensorless vector control (without encoder) - PWM SVM (Space Vector Modulation) Full digital (software) current, flux, and speed regulators Execution rate: - current regulators: 0.2 ms (switching frequency of 2.5 kHz and 5 kHz), 0.25 ms (switching frequency $=2 \mathrm{kHz}$) - flux regulator: 0.4 ms (switching frequency of 2.5 kHz and 5 kHz), 0.5 ms (switching frequency $=2 \mathrm{kHz}$) - speed regulator / speed measurement: 1.2 ms
	Output frequency	0 to $3.4 \times$ rated motor frequency (PO403). The rated frequency is programmable from 0 Hz to 300 Hz in the scalar mode and from 30 Hz to 120 Hz in the vector mode Output frequency limits as a function of the switching frequency: -125 Hz (switching frequency $=1.25 \mathrm{kHz}$) -200 Hz (switching frequency $=2 \mathrm{kHz}$) -250 Hz (switching frequency $=2.5 \mathrm{kHz}$) -500 Hz (switching frequency $=5 \mathrm{kHz}$)
Performance	Speed control	V/f (Scalar): Regulation (with slip compensation): 1% of the rated speed Speed variation range: 1:20 VW: Regulation: 1% of the rated speed Speed variation range: 1:30 Sensorless (P0202 $=3$ induction motor): Regulation: 0.5% of the rated speed Speed variation range: 1:100 Vector with Encoder (P0202 $=4$ induction motor \circ P0202 $=6$ permanent magnet): - Regulation: $\pm 0.01 \%$ of the rated speed with a 14 -bits analog input (IOA) ± 0.01 \% of the rated speed with a digital reference (Keypad, Serial, Fieldbus, Electronic Potentiometer, Multispeed) $\pm 0.05 \%$ of the rated speed with a 12-bits analog input (CC11) Speed variation range: 1:1000
	Torque control	Range: 10 to 180%, regulation: $\pm 5 \%$ of the rated torque (PO202 $=4,6$ or 7) Range: 20 to 180%, regulation: $\pm 10 \%$ of the rated torque (P0202 $=3$, above 3 Hz)
Inputs (CC11 Board)	Analog	2 isolated differential inputs; resolution of AI1: 12 bits, resolution of AI2: 11 bits + signal, (0 to 10) V , (0 to 20) mA or (4 to 20) mA, impedance: $400 \mathrm{k} \Omega$ for (0 to 10) $\mathrm{V}, 500 \Omega$ for (0 to 20) mA or (4 to 20) mA , programmable functions
	Digital	》 6 isolated digital inputs, 24 Vdc , programmable functions
Outputs (CC11 Board)	Analog	2 isolated outputs, $(0$ to 10$) \mathrm{V}, \mathrm{Rl} \geq 10 \mathrm{k} \Omega$ (maximum load), 0 to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA}(\mathrm{Rl} \leq 500 \Omega$) resolution: 11 bits, programmable functions
	Relay	》 3 relay outputs with NA/NF (NO/NC), $240 \mathrm{Vac}, 1$ A, programmable functions
Safety	Protection	Output overcurrent/short-circuit Under/Overvoltage Phase loss Overtemperature Braking resistor overload IGBTs overload Motor overload External fault/alarm CPU or memory fault Output phase-ground short-circuit
Integral keypad (HMI)	Standard keypad	9 operator keys: Start/Stop, Up arrow, Down arrow, Direction of rotation, Jog, Local/Remote, Right soft key and Left soft key Graphical LCD display View/edition of parameters Indication accuracy: - current: 5% of the rated current - speed resolution: 1 rpm Possibility of remote mounting
Enclosure	IP20	- Standard
	IP00	\square Special DC hardware
	IP54	■ Back of the inverter (external part for flange mounting) ${ }^{(1)}$
PC connection for inverter programming	USB connector	USB standard Rev. 2.0 (basic speed) Type B (device) USB plug Interconnection cable: standard host/device shielded USB cable

(1) They need special hardware H .

8.3 CODES AND STANDARDS

Safety standards	■ UL 508C - power conversion equipment Note: suitable for Installation in a compartment handling conditioned air. Ø UL 840 - insulation coordination including clearances and creepage distances for electrical equipment - EN61800-5-1 - safety requirements electrical, thermal and energy E EN 50178 - electronic equipment for use in power installations - EN 60204-1 - safety of machinery. Electrical equipment of machines. Part 1: general requirements Note: the final assembler of the machine is responsible for installing an safety stop device and a supply disconnecting device (EN 60146 (IEC 146) - semiconductor converters (EN 61800-2 - adjustable speed electrical power drive systems - part 2: general requirements rating specifications for low voltage adjustable frequency AC power drive systems
Electromagnetic compatibility (EMC)	■ EN 61800-3-adjustable speed electrical power drive systems - part 3: EMC product standard including specific test methods ■ CISPR 11 - Industrial, scientific and medical (ISM) radio-frequency equipment - electromagnetic disturbance characteristics - Limits and methods of measurement - EN 61000-4-2 - electromagnetic compatibility (EMC) - part 4: testing and measurement techniques section 2: electrostatic discharge immunity test ■ EN 61000-4-3 - electromagnetic compatibility (EMC) - part 4: testing and measurement techniques section 3: radiated, radio-frequency, electromagnetic field immunity test ■ EN 61000-4-4 - electromagnetic compatibility (EMC) - part 4: testing and measurement techniques section 4: electrical fast transient/burst immunity test ■ EN 61000-4-5 - electromagnetic compatibility (EMC) - part 4: testing and measurement techniques section 5: surge immunity test च EN 61000-4-6 - electromagnetic compatibility (EMC)- part 4: testing and measurement techniques - section 6: Immunity to conducted disturbances, induced by radio-frequency fields Ø EN 61000-4-11 - Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests
Mechanical standards	EN 60529 - degrees of protection provided by enclosures (IP code) UL 50 - enclosures for electrical equipment IEC 61800-5-1 - adjustable speed electrical power drive systems - part 5-1: safety requirements electrical, thermal and energy Level 10 Hz to $57 \mathrm{~Hz}-0,075 \mathrm{~mm}$ of range 57 Hz to $150 \mathrm{~Hz}-1 \mathrm{~g}$

8.4 CERTIFICATIONS

Certifications (${ }^{*}$)	Notes
UL and cUL	E184430
CE	
IRAM	
C-Tick	
EAC	Link: http://ww2.eagle.org/en/rules-and-resources/type-approval-database.html After accessing the link, click on "Select Option" and select "Data Search". On the new window, the certificate number must be entered on the "Certificate Number" field: 15-RJ2890495. Click on "Search".
Functional Safety	STO Funtion, with certificate issued by TÜV Rheinland.

$\left(^{*}\right)$ For updated information on certifications, please, contact WEG.

8.5 MECHANICAL DATA

Frame Size F

Figure 8.2 - Frame size F dimensions - mm [in]

Frame Size G

Figure 8.3-Frame size G dimensions - mm [in]

Frame Size H

Figure 8.4 - Frame size H dimensions - mm [in]

[^0]: (1) 6.4 mm ($1 / 4 \mathrm{in}$) copper bus bar must be used with width specified in Table 3.3 on page 3-16.
 (2) Use fuses with $I^{2}+$ value smaller than or equal to the value specified in Table 3.2 on page 3-13 and voltage and breaking capacity for 800 Vdc .
 (3) For these applications, the fuses cannot be installed on FSW and RPW switch-disconnectors - only on BNH individual mounting bases.

