Intelligent Drivesystems, Worldwide Services

SUPPLEMENTARY MANUAL BU 0280 GB

DEVICENET FOR FREQUENCY INVERTER NORDAC SK 200E







Illustration of devices with options







# BU 0280 GB

Getriebebau NORD GmbH & Co. KG Rudolf-Diesel-Straße 1 D-22941 Bargteheide Tel.: +49 45 32 - 40 10 Fax: +49 45 32 - 40 12 53





# NORDAC frequency inverter



# Safety and operating instructions for drive power converters

(as per: Low voltage guideline 73/23/EEC)

#### 1. General

During operation, drive power converters may have, depending on their protection class, live, bare, moving or rotating parts or hot surfaces.

Unauthorised removal of covers, improper use, incorrect installation or operation leads to the risk of serious personal injury or material damage.

Further information can be found in this documentation.

All transportation, installation and initialisation and maintenance work must be carried out **by qualified personnel** (comply with IEC 364, CENELEC HD 384, DIN VDE 0100, IEC 664 and DIN VDE 0110, and national accident prevention regulations).

For the purposes of these basic safety instructions, qualified personnel are persons who are familiar with the erection, installation, commissioning and operation of this product and who have the relevant qualifications for their work.

#### 2. Proper use in Europe

Drive power converters are components intended for installation in electrical systems or machines.

When being installed in machines, the drive power converter cannot be commissioned (i.e. implementation of the proper use) until it has been ensured that the machine meets the provisions of the EC directive 89/392/EEC (machine directive); EN 60204 must also be complied with.

Commissioning (i.e. implementation of the proper use) is only permitted when the EMC directive (89/336/EEC) is complied with.

The drive power converters meet the requirements of the low voltage directive 73/23/EEC. The harmonised standards in prEN 50178/DIN VDE 0160, together with EN 60439-1/VDE 0660 Part 500 and EN 60146/VDE 0558 were applied for the drive power converter.

Technical data and information for connection conditions can be found on the rating plate and in the documentation, and must be complied with.

#### 3. Transport, storage

Information regarding transport, storage and correct handling must be complied with.

#### 4. Installation

The installation and cooling of the equipment must be implemented according to the regulations in the corresponding documentation.

The drive power converter must be protected against impermissible loads. Especially during transport and handling, components must not be deformed and/or insulation distances must not be changed. Touching of electronic components and contacts must be avoided.

Drive power converters have electrostatically sensitive components that can be easily damaged by incorrect handling. Electrical components must not be mechanically damaged or destroyed (this may cause a health hazard!).

#### 5. Electrical connection

When working on live drive power converters, the applicable national accident prevention regulations must be complied with (e.g. VBG 4).

The electrical installation must be implemented as per the applicable regulations (e.g. cable cross-section, fuses, ground lead connections). Further instructions can be found in the documentation.

Information about EMC-compliant installation – such as shielding, earthing, location of filters and installation of cables – can be found in the drive power converter documentation. These instructions must be complied with even with CE marked drive power converters. Compliance with the limit values specified in the EMC regulations is the responsibility of the manufacturer of the system or machine.

#### 6. Operation

Systems where drive power converters are installed must be equipped, where necessary, with additional monitoring and protective equipment as per the applicable safety requirements, e.g. legislation concerning technical equipment, accident prevention regulations, etc. Modifications to the drive power converter using the operating software are permitted.

After the drive power converter is disconnected from the power supply, live equipment components and power connections should not be touched immediately because of possible charged capacitors. Comply with the applicable information signs located on the drive power converter.

All covers must be kept closed during operation.

#### 7. Maintenance and repairs

The manufacturer documentation must be complied with.

#### These safety instructions must be kept in a safe place!

# **Documentation**

| Designation:   | BU 0280 GB                            |
|----------------|---------------------------------------|
| Part. No.:     | 607 28 01                             |
| Device series: | DeviceNet for SK 200E                 |
| Device types:  | SK CU4-DEV                            |
|                | SK TU4-DEV(-C) with SK TI4-TU-BUS     |
|                | SK TU4-DEV-M12(-C) with SK TI4-TU-BUS |

# Version list

| Designation of previous issues | Software version | Comments    |
|--------------------------------|------------------|-------------|
| BU 0280 GB, September 2009     | V 1.1 R2         | First issue |
| Part. No. 607 2801 / 3709      |                  |             |
|                                |                  |             |
|                                |                  |             |
|                                |                  |             |
|                                |                  |             |
|                                |                  |             |
|                                |                  |             |
|                                |                  |             |
|                                |                  |             |
|                                |                  |             |
|                                |                  |             |

# Publisher

# Getriebebau NORD GmbH & Co. KG

Rudolf- Diesel- Str. 1 • D-22941 Bargteheide, Germany • http://www.nord.com/ Telephone +49 (0) 45 32 / 401-0 • Fax +49 (0) 45 32 / 401-555

NOTE



This supplementary operating manual is only valid in conjunction with the operating manual supplied for the respective frequency inverter.

#### Intended use of the frequency inverter

**Compliance** with the operating instructions is the requirement for error-free operation and the fulfilment of any warranty claims. You must first read these operating instructions before working with the device!

These operating instructions contain **important information about service**. They must therefore **be kept close** to the device.

The field bus technology options described here are intended for use in combination with SK 200 E series frequency inverters. Use with other series is only possible with the SK TU4-DEV(-C)) and SK TU4-DEV-M12(-C) technology modules for the SK 500E. The use of these technology options with other devices is not permitted and can lead to their destruction.

The field bus technology options and the associated frequency inverters are devices for fixed installation on motors or in equipment close to the motor to be operated. All data regarding technical data and permissible conditions at the installation site must be complied with.

Commissioning (implementation of the intended use) is not permitted until it has been ensured that the machine complies with the EMC directive 89/336/EEC and that the conformity of the end product meets the machine directive 89/392/EEC (note EN 60204).

© Getriebebau NORD GmbH & Co. KG, 2009

| 1 GENERAL INFORMATION                                                     | 8  |
|---------------------------------------------------------------------------|----|
| 1.1 Overview                                                              | 9  |
| 1.2 Delivery                                                              | 9  |
| 1.3 Scope of supply                                                       |    |
| 1.4 Certifications                                                        |    |
| 1.4.1 European EMC Directive                                              |    |
| 1.4.2 RoHS compliance                                                     |    |
| 1.5 Type code / Optional BUS modules                                      |    |
| 1.6 Version with protection class IP55 / IP66                             |    |
| 2 ASSEMBLY AND INSTALLATION                                               | 13 |
| 2.1 Installation and assembly                                             |    |
| 2.1.1 Features of DeviceNet modules                                       |    |
| 2.1.2 Installation of the Customer Unit SK CU4-DEV                        |    |
| 2.1.3 Installing the SK TU4-DEV Technology Unit                           |    |
| 2.2 Electrical connection                                                 |    |
| 2.2.1 Cable glands                                                        |    |
| 2.2.2 Control connections                                                 | 20 |
| 2.2.3 Configuration                                                       | 26 |
| 3 DISPLAYS AND DIAGNOSIS                                                  | 20 |
| 3.1 LED displays                                                          | -  |
|                                                                           |    |
| 3.1.1 Device-specific display versions<br>3.1.2 Signal status LEDs        |    |
| 3.2 RJ12 Diagnostic socket                                                |    |
| 4 COMMISSIONING                                                           |    |
|                                                                           |    |
| 4.1.1 Gateway function                                                    |    |
| 4.1.2 Parameterisation via DeviceNet<br>4.1.3 Timeout monitoring          |    |
|                                                                           |    |
| 4.1.4 Input filtering                                                     |    |
| 4.2 DeviceNet process data                                                |    |
| 4.2.1 I/O messages<br>4.2.2 Interpretation of data in the Assembly Object |    |
| 4.2.3 Explanation of the I/O Assembly Data for the AC Drive Profile       |    |
| 4.2.4 Explanation of the I/O Assembly Data for the NORD-AC Profile        |    |
| 4.2.5 Generation of variable data lengths in Instance 120/130             |    |
| 4.3 DeviceNet objects                                                     |    |
| 4.3.1 Class 1 – Identity Object                                           |    |
| 4.3.2 Class 3 – DeviceNet Object                                          |    |
| 4.3.3 Class 4 – Assembly Object                                           |    |
| 4.3.4 Class 5 – DeviceNet Connection Object                               |    |
| 4.3.5 Class 40 – Motor Data Object                                        |    |
| 4.3.6 Class 41 – Control Supervisor Object                                |    |
| 4.3.7 Class 42 – AC- Drive Object                                         |    |
| 4.3.8 Class 43 – Acknowledge Handler Object                               | 45 |
| 4.3.9 Class 100 to 181 – Access to FI and bus module parameters           | 46 |
| 4.3.10 Class 199 - NORDAC Index Object                                    | 46 |

| 5 PARAMETERISATION                                                                  | 47   |
|-------------------------------------------------------------------------------------|------|
| 5.1 Parameterising the SK 200E frequency inverter                                   | 47   |
| 5.1.1 Basic parameters (P100)                                                       |      |
| 5.1.2 Control terminal parameters (P400)                                            |      |
| 5.1.3 Supplementary parameter (P500)                                                | 50   |
| 5.1.4 Information parameters (P700)                                                 |      |
| 5.2 Parameterisation of the bus module (SK CU4 or SK TU4)                           |      |
| 5.2.1 BUS module standard parameters (P150)                                         |      |
| 5.2.2 DeviceNet Parameters                                                          |      |
| 5.2.3 BUS module information parameters, general (P170)                             |      |
| 5.2.4 Module information parameters specific to the bus (P180)                      | 62   |
| 6 ERROR MONITORING AND ERROR MESSAGES                                               | 63   |
| 6.1 Error monitoring                                                                | 63   |
| 6.2 Error messages                                                                  | 64   |
| 6.2.1 Table of possible error messages (caused by the bus) in the frequency inverte | ər64 |
| 6.2.2 Table of possible error messages in the bus module                            | 65   |
| 7 DEVICENET DATA TRANSMISSION                                                       | 66   |
| 7.1 Structure of reference data                                                     | 66   |
| 7.2 NORDAC profile                                                                  | 67   |
| 7.2.1 Control word (STW)                                                            | 67   |
| 7.2.2 Status word (ZSW)                                                             |      |
| 7.2.3 Setpoint and actual values                                                    |      |
| 7.2.4 The status machine                                                            | 71   |
| 8 ADDITIONAL INFORMATION                                                            | 73   |
| 8.1 System bus                                                                      | 73   |
| 8.2 Electronic data sheet (eds file)                                                | 73   |
| 8.3 Repairs                                                                         |      |
| 9 INDEX                                                                             | 74   |
| 10 KEYWORD INDEX                                                                    |      |
|                                                                                     | -    |
| 11 REPRESENTATIVES / BRANCHES                                                       | 76   |

# 1 General information

Various technology options are available for Getriebebau Nord frequency inverters. General information regarding these can be found in the relevant main manual of the frequency inverter series (e.g. Manual BU0200 for the SK 200E frequency inverter series). Further information concerning special technology options (e.g. the field bus module) is included in the relevant supplementary operating instructions.

This DeviceNet documentation contains supplementary descriptions concerning the DeviceNet options for the SK 200E frequency inverter series.

The description of other optional modules (e.g. CANopen, Profibus DP) is dealt with in other supplementary documentation.

In order to set up communication with DeviceNet, either an internal **Customer Unit** or an external **DeviceNet Technology Unit** (according to the particular application) must be installed and connected.

#### The DeviceNet bus system

DeviceNet allows numerous different automation devices to exchange data with the frequency inverters. PLC's, PC's, operating and monitoring devices can all communicate via a uniform bus in serial bit mode. DeviceNet is primarily used for communication between sensor and actuator where system response needs to be very fast. DeviceNet is primarily used where time critical, fast and complex communication between the individual devices is essential. DeviceNet is a suitable alternative to expensive 24-volt parallel signal transmission and transmission of measured values. This type of DeviceNet, which is optimised to speed, is used for instance for operating frequency inverters on automation devices.

# 1.1 Overview

Features of DeviceNet modules

- Electrically isolated bus interface
- Transfer rate up to 500 kBaud
- Easy connection of the frequency inverter, optionally via M12 round plugs or screw terminals
- Looping of the DeviceNet via the modules is possible
- Integrated bus termination resistor
- DeviceNet-specific status display with 2 LEDs
- Module or FI-specific status display with 2 LEDs
- Up to four 24V inputs and two 24V outputs are integrated into the bus module
- Direct connection of up to 4 sensors and 2 activators via M12 round plug connectors on the SK TU4-DEV-M12(-C) version. Visualisation of signal status via LEDs
- DeviceNet gateway solution → up to 4 frequency inverters can be connected to a DeviceNet module
- Up to 64 DeviceNet modules can be connected to the bus, so that it is possible to operate up to 256 frequency inverters on a single bus.
- Interface (RS232/RS485) for parameter access by means of the SK CSX-3H or SK PAR-3H manual control unit or NordCon software via RJ12 connector (Except for SK CU4-DEV. Here parameter access via the SK 200E frequency inverter is possible)
- Available as versions for installation in the inverter (IP20) or in a separate housing (optionally IP55 / IP66)

# 1.2 Delivery

Check the equipment **immediately** after delivery/unpacking for transport damage such as deformation or loose parts.

If there is any damage, contact the carrier immediately and implement a thorough assessment.

#### Important! This also applies even if the packaging is undamaged.

# 1.3 Scope of supply

Standard version:

# SK TU4-DEV(-M12)<u>(-C)</u>

SK CU4-DEV

IP20 or

IP55, **(optionally IP66)** 

Operating instructions as PDF file on CD ROM including NORD CON, (Windows PC-based parameterisation software)

Available accessories: SK TI4-TU-BUS(-C) (bus connection unit, required for SK TU4...)

SK TIE4-WMK-TU, wall-mounting kit TU4

M12 round plug connector

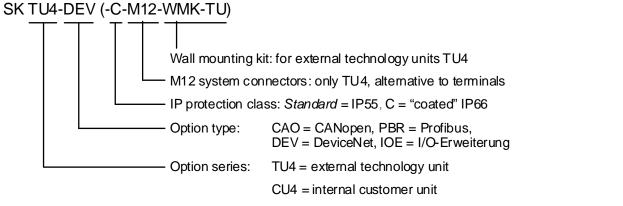
Matching **RJ12 to SUB-D9** adapter cable to connection to a PC ParameterBox: **SK CSX-3H**, SimpleBox, 4 digit 7 segment LED display ParameterBox: **SK PAR-3H**, ParameterBox, plain text LCD display

# 1.4 Certifications

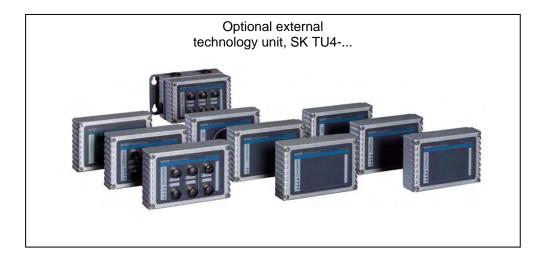
# **1.4.1** European EMC Directive

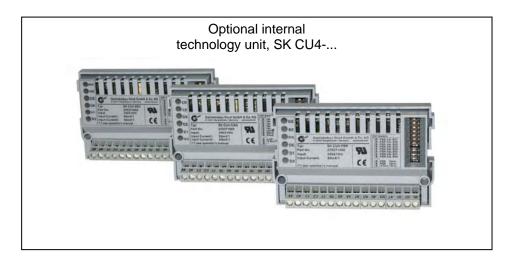
If the NORDAC SK 200E or its options are installed according to the recommendations in this instruction manual, it meets all EMC directive requirements, as per the EMC product standard for motor-operated systems EN 61800-3.

# 1.4.2 RoHS compliance


SK 200E series frequency inverters or their options are designed to be RoHS compliant according to Directive 2002/95/EEC




CE


# 1.5 Type code / Optional BUS modules

BUS = Bus module or I/O extension



(...)Options, only implemented if required.





# 1.6 Version with protection class IP55 / IP66

**NORDAC SK 200E** frequency inverters and the **external additional modules** are available in all sizes and powers in the protection classes IP55 (standard) or IP66 (optional).

The protection class IP66 must always be included in the order when ordering!

There are no restrictions or differences to the scope of functions in either protection class. In order to differentiate the protection classes, modules with protection class IP66 are given an extra "-C" (coated  $\rightarrow$  coated PCBs) in their type designation.

e.g. SK TU4-DEV-C

#### IP55 version:

The IP55 version of the external technology units is the **standard** version. Both versions (inverter-mounted – as an attachment to the frequency inverter or wall mounted on the wall bracket) are available.

#### IP66 design:

The IP66 design is a modified **option** compared to the IP55 design. With this design, both versions (invertermounted or wall-mounted) are also available. The modules available for the IP66 version have the same functionalities as the corresponding modules for the IP55 version.



The modules for the IP66 design are identified by an additional "-C" and are modified according to the following **special measures**!

#### **Special measures:**

Impregnated PCBs, painted housing

Diaphragm valve for pressure compensation on temperature changes.

Low pressure test

→ A free M12 screwed connection is required for low pressure testing. After successful testing, a diaphragm valve is inserted here. This screw connection is therefore no longer available for a cable gland.

#### NOTE



For all versions, <u>care must be taken</u> that the cable and the cable gland are carefully matched. This is essential to ensure that the required protection class is maintained.

# 2 Assembly and installation

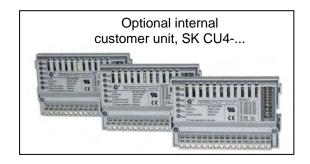
# 2.1 Installation and assembly

Internal and external technology modules designed for NORDAC SK 200E series are available for DeviceNet. Except for the number of digital inputs and outputs, the functionalities of the various DeviceNet modules are identical.

These are used to connect SK 200E series speed regulated drive units to overriding automation systems via the DeviceNet field bus. Both the SK 200E frequency inverters and the external technology units are available in the protection classes IP55 (standard) and IP66 (optional). The type designation of the SK 300E and the modules in the protection class IP66 is given an additional code "-**C**" (**c**oated  $\rightarrow$  coated board) to differentiate the IP55 and IP66 protection classes.



SK TI4-... with integrated technology unit SK CU4-...




SK 200E with external technology unit SK TU4-... and BUS connection module SK TI4-TU-BUS



SK TIE4-WMK-TU with BUS connection module SK TI4-TU-BUS and external technology unit SK TU4-... or SK TU4-...-M12

The <u>internal</u> technology modules (**Customer Unit, SK CU4-**...) – designated as the **customer unit** – are integrated into the connection unit of the SK 200E. The electrical connection to the SK 200E is made via the internal system bus. The connection to external peripheral devices is made via screw terminals. The use of the optionally available 4 or 5 pin M12 round plug connector, installed in the connection unit of the SK 200E, provides a possible interface for connection to the field bus. A maximum of one customer interface (including any 24V module) can be installed in the SK 200E frequency inverter.



The <u>external</u> technology modules (**Technology Unit**, **SK TU4-...**) – designated as the **technology unit** – are externally attached to the SK 200E connection unit and are therefore easy to access. Mounting of the SK TU4-... separate from the frequency inverter is possible by means of the optional wall mounting kit **SK TIE4-WMK-TU**. The electrical connection to the SK 200E is made via the internal system bus. 4 or 5 pin M12 round plug connectors (for installation in the BUS connection unit **SK TI4-TU-BUS**) are available as an option for connection of the field bus cable. The external modules are also available as a version with integrated M12 round plug connectors (SK TU4-xxx-M12). These enable the connection of up to 4 digital inputs and 2 digital outputs.



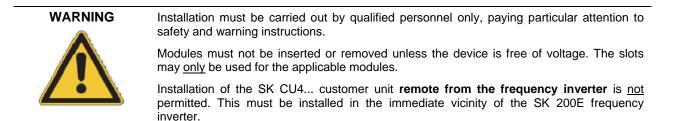


Modules should not be inserted or removed unless the device is free of voltage. The slots may only be used for the applicable modules.

Mounting of the external technology unit **remote** from the frequency inverter is possible with the additional wall-mounting kit (SK TIE4-WMK-TU). However, a maximum cable length of **30m** should not be exceeded.

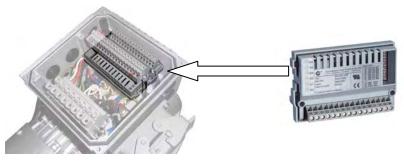
The external technology units (SK TU4-...(-M12) cannot be operated without the BUS connection unit (SK T14-TU-BUS)!

NOTE




Only one technology unit (SK CU4... or SK TU4...) can be connected to a system bus.

# 2.1.1 Features of DeviceNet modules


| Bus Module                                                                                                            | Description                                                                                                                                                                                                                    | Data                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DeviceNet module<br><b>SK CU4-DEV</b><br>Part No. 275271002 (IP20)                                                    | This option enables control of the NORDAC SK 200E via DeviceNet.<br>This option is integrated into the connection unit of the frequency inverter.                                                                              | Baud rate:<br>up to 500 kBaud<br>Connection:<br>16-terminal screw terminal bar<br>2x digital inputs:<br>Low: 0-5V, High: 11-30V                                                                |
| DeviceNet module*<br><b>SK TU4-DEV(-C)</b><br>Part No. 275281102 (IP55)<br>Part No. 275281152 (IP66)                  | This option enables control of the NORDAC SK 200E via DeviceNet.<br>This option is installed externally to the frequency inverter.<br>According to the installation location, at least one "BUS connection unit"* is required. | Baud rate:<br>up to 500 kBaud<br>Connection:<br>36 pin spring terminal bar of the<br>" BUS connection unit" *<br>4x digital inputs:<br>Low: 0-5V, High: 11-30V<br>2x Digital outputs:<br>0/24V |
| DeviceNet module with<br>M12*)<br><b>SK TU4-DEV-M12(-C)</b><br>Part No. 275281202 (IP55)<br>Part No. 275281252 (IP66) | This option enables control of the NORDAC SK 200E via DeviceNet.<br>This option is installed externally to the frequency inverter.<br>According to the installation location, at least one "BUS connection unit"* is required. | As for SK TU4-DEV(-C) but with<br>additional:<br>6x M12 sockets for the<br>connection of up to 4 sensors<br>and 2 actuators via 5 pin M12<br>round plug connectors (B coded)                   |
| Connection unit for TU4<br><b>SK TI4-TU-BUS</b><br>Part No. 275280000 (IP55)<br>Part No. 275280500 (IP66)             | The connection unit is always required in order to<br>use an external technology unit (SK TU4). This<br>implements the connection of the technology unit to<br>the SK 200E or the wall-mounting kit.                           | Connection:<br>36 pin spring terminal bar<br>36x 2.5mm <sup>2</sup><br>AWG 26-14<br>spring terminals                                                                                           |
| TU4 wall-mounting kit<br><b>SK TIE4-WMK-TU</b><br>Part. No. 275274002<br>*) in order to use                           | With the wall mounting kit, a technology unit can be used/installed separately from the SK 200E.                                                                                                                               | ction unit must always be available!                                                                                                                                                           |

# 2.1.2 Installation of the Customer Unit SK CU4-DEV



The installation of customer units is carried out in the connection unit SK T14... SK 200E underneath the control terminal bar. Fastening is by means of the terminal bar of the frequency inverter and two M4x20 screws (bag enclosed with the customer unit). Only one customer unit per FI is possible!

The pre-assembled cables for connection to the frequency inverter (SK 200E) are also included in the bag enclosed with the customer unit. Connections are made according to the following table:





SK TI4-... with integrated customer unit SK CU4-DEV

Internal customer unit SK CU4-DEV

Bag enclosed with internal customer unit

| Function                                       | Те | rminal label | Cable colour |
|------------------------------------------------|----|--------------|--------------|
| Power supply                                   | 44 | 24V          | brown        |
| (between frequency inverter and customer unit) | 40 | GND          | blue         |
| Sustan bus                                     | 77 | SYS+         | black        |
| System bus                                     | 78 | SYS-         | grey         |



Set the termination resistors of the system bus! See Section 2.2.3 "Configuration"

# 2.1.3 Installing the SK TU4-DEV-... Technology Unit



Installation must be carried out by qualified personnel only, paying particular attention to safety and warning instructions.

Modules must not be installed or removed unless the device is free of voltage. The slots may <u>only</u> be used for the applicable modules.

Mounting of the external technology unit **remote** from the frequency inverter is possible <u>with the additional wall-mounting kit</u> (SK TIE4-WMK-TU).

Together with the BUS connection unit SK TI4-TU-BUS(-C) the technology unit SK TU4-DEV-...(-C) forms a stand-alone functional unit. This can be attached to the SK 200E frequency inverter or installed separately by means of the optional SK TIE4-WMK-TU wall-mounting kit.

#### 2.1.3.1 Dimensions of the SK TI4-WMK-TU wall-mounting kit

The optional wall-mounting kit has the following dimensions.



#### 2.1.3.2 BUS connection unit SK TI4-TU-BUS(-C)

Various cable glands closed by caps are located on the sides of the BUS connection unit.

The following holes are available as cable inlets:

- 2 x 1 M20 x 1.5 (on sides)
- 4 M20 x 1.5 (underside)
- 2 M25 x 1.5 (rear side, without caps)



External BUS connection unit = SK TI4-TU-BUS

The transparent screw-on cover (M20 x 1.5) on the upper right serves as access to the diagnostic interface (RJ12 socket, interface RS232/RS485). The upper left screw-on cover is not used.

## 2.1.3.3 Mounting the SK T14-TU-BUS on the SK 200E

The screw fittings and seals required for installation are enclosed with the modules or are fitted to the intended locations.

**Mounting** of the technology unit on the SK 200E must be carried out as follows:

- 1. Switch off the mains.
- 2. Remove the two M25 caps on the required side of the frequency inverter (right / left).
- 3. Remove the printed circuit board (with terminal bar) from the BUS connection unit.
- 4. Install the SK TI4-TU-BUS (with adhered <u>seal</u>) on the SK 200E using the 4 enclosed bolts.
- 5. Replace the printed circuit board (See point 3) and carry out the electrical connections.
- 6. Fit and screw on the SK TU4 module.



Mounting the external technology unit on the SK 200E



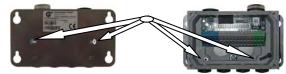


Technology unit SK TU4-DEV (-M12)

BUS connection unit SK TI4-TU-BUS

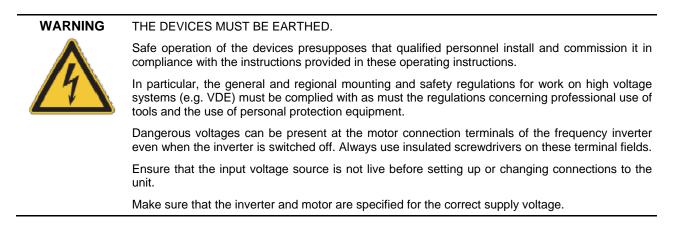


#### 2.1.3.4 Wall mounting the SK TI4-TU-BUS


The screw fittings (except for anchoring screws) and seals required for installation are enclosed with the modules or are fitted to the intended locations.

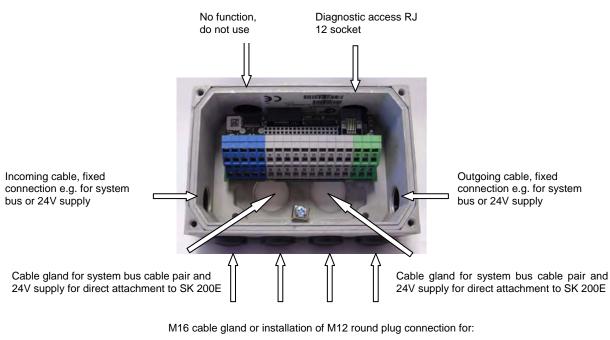
The connecting cable between the technology unit and the SK 200E should not be longer than 30m.

 Mount the SK TI4-TU-BUS connecting unit with adhered <u>seal</u> on the wall-mounting kit. To do this: Insert the 2 x cheese-head screws (enclosed with wall-mounting kit) into the (countersunk) holes from the outside and with the 2 x bolts (enclosed with the wall-mounting kit) securely screw both components together from the inside (BUS connection unit).




Wall-mounting kit SK TI4 WMK TU with field bus technology unit




- 2. Make a suitable cable connection between the technology unit and the frequency inverter. Take care that there is appropriate screw fitting and sealing of the modules. The cable sets enclosed with the BUS connection unit are not used.
- 3. Fit and screw on the SK TU4 module.

# 2.2 Electrical connection



## 2.2.1 Cable glands

Both the SK 200E connection unit and the bus module provide extensive facilities for the connection of all the required cables. The cables may enter the housing via cable glands and be connected to the terminal bar. However, appropriate round plug connections (e.g.: M12 round plug connectors in M16 cable glands) may be fitted in order to provide a plug-in solution.



incoming and outgoing DeviceNet cables

- > 24V and 24V (for DO) supply
- System bus
- I/O peripherals: Sensors and actuators

Example: Cable glands for BUS connection unit SK TI4-TU-BUS

# 2.2.2 Control connections

The DeviceNet modules must be provided with one or two 24V DC (±20%, total current consumption 100mA) control voltages. Wire end sleeves must be used for flexible cables.

| Designation                             | Data        |
|-----------------------------------------|-------------|
| Rigid cable cross-section               | 0.14 2.5mm² |
| Flexible cable cross-section            | 0.14 1.5mm² |
| AWG standard                            | AWG 26-14   |
| Tightening torque (for screw terminals) | 0.50.6Nm    |

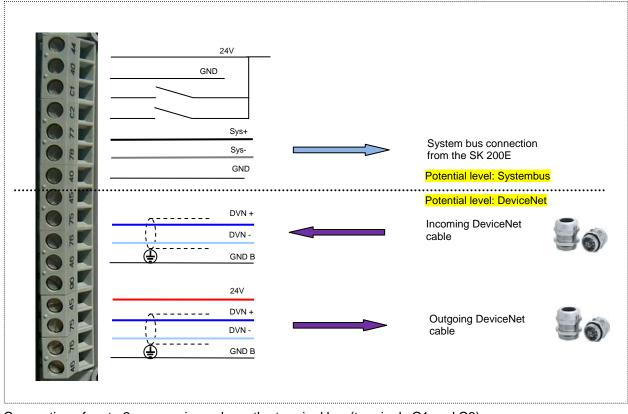
Within the terminal box (unshielded cable section) the data cables (e.g. DeviceNet, system bus) must be installed as short as possible and of equal length. Associated data cables (e.g.: Sys+ and Sys-) must be twisted.



In the customer unit, the DeviceNet is already installed with voltage isolation from the other signal connections.

In case of EMC problems, voltage separation of the field bus supply, the digital inputs and system bus interface and for the external technology unit also for the two additional digital outputs should be provided.




The cable shielding must be connected to the *functional earthing*<sup>1</sup> (usually the electrically conducting mounting plate) in order to prevent EMC interference in the device.

In order to achieve this, for DeviceNet connections it is mandatory that the metallic metric EMC screws are used for the connection of the DeviceNet shielding lead to the frequency inverter or the housing of the technology unit. This ensures a wide area connection of the *functional earthing*.

<sup>&</sup>lt;sup>1</sup> In systems, electrical equipment is usually connected to a *functional earth*. This serves as a means to dissipate leakage and interference currents in order to ensure EMC characteristics and must therefore be implemented according to high frequency technology aspects.

# 2.2.2.1 Control connections for SK CU4-DEV

The terminal bar of the customer unit SK CU4-DEV is divided into two potential levels.

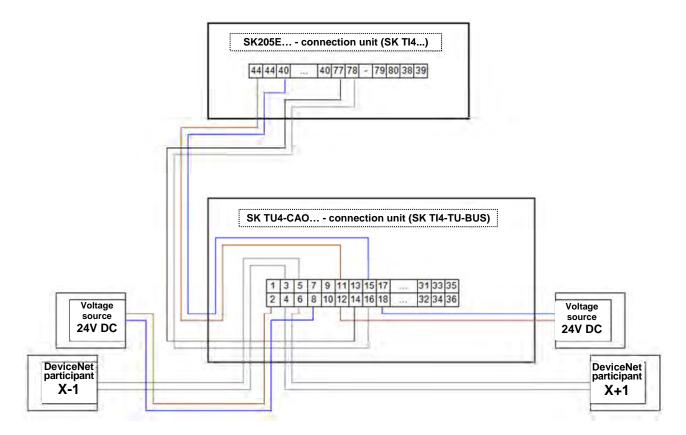


Connection of up to 2 sensors is made on the terminal bar (terminals C1 and C2).

#### Terminal/ Function Data Description / wiring suggestion Parameter Designation [factory setting] 44 24V External 24V supply 24VDC ±20% External supply voltage of the technology unit and supply of the ≈ 50mA, reverse polarity GND Reference potential 40 digital inputs (DIN1 and DIN2) protected for digital signals Low 0V ... 5V C1 DIN1 Digital input 1 P174 [I/O DeviceNet DIN1] High 15V ... 30V $R_i = 8.1 k\Omega$ Each digital input has a reaction C2 DIN2 **Digital input 2** Input capacitance 10nF time of 1ms. [I/O DeviceNet DIN2] Scan rate 1 ms P174 Inputs as per EN 61131-2 Type 1 77 System bus Sys + data cable + System bus interface 78 Sys -System bus data cable -GND 40 Reference potential for digital signals Potential isolation 45 24V 24V supply bus potential 75 DVN+ DeviceNet Bus + The use of twisted, shielded two-DeviceNet conductor cable is urgently recommended DVN -76 DeviceNet Bus -46 **GND Bus** Data ground Bus reference potential 90 SHLD Shield Data cable shield 45 +24V Bus Electrically isolated 24VDC +/-20% The external supply voltage of the 24V bus supply technology unit is at the potential of ≤ 50mA reverse polarity the DeviceNet bus. protected 75 DVN+ DeviceNet Bus + The use of twisted, shielded twoconductor cable is urgently **DeviceNet** recommended 76 DVN -DeviceNet Bus -46 **GND Bus** Data ground Bus reference potential

#### Control connection details

## 2.2.2.2 Control connections for SK TU4-DEV(-...)


The double spring-loaded terminal bar of the technology unit is colour coded, and therefore indicates the three different potential levels.

A separate voltage source can be used to supply the DOs. However, by bridging the <u>24V o</u> and <u>GND o</u> to one of the terminals of the system bus level <u>24V</u> and <u>GND</u> it is possible to implement the supply of the DOs.

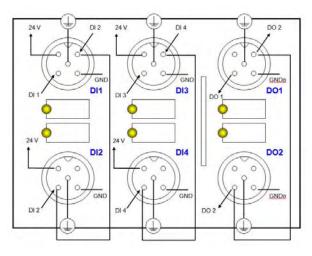
Connection of up to 4 sensors and 2 actuators is made via the terminal bar. Alternatively, the SK TU4-DEV-**M12** module enables the connection of these I/Os via the M12 round plug connector (5 pin socket, A-coded) mounted on the front.

|            |              | d bus<br>eviceN |            |      |                    | System bus level and digital inputs |       |     |       |     |                    | Digital outputs |       |                    |             |      |             |
|------------|--------------|-----------------|------------|------|--------------------|-------------------------------------|-------|-----|-------|-----|--------------------|-----------------|-------|--------------------|-------------|------|-------------|
| 24V<br>BUS | DVN +<br>IN  | DVN -<br>IN     | GND<br>BUS | SHLD | 24V                | 24V<br>(as for 11)                  | GND   | GND | DIN 1 | GND | 24V<br>(as for 11) | DIN 2           | DIN 4 | 24V<br>(as for 11) | 24V O<br>DO | DO 1 | GND O<br>DO |
| 1          | 3            | 5               | 7          | 9    | 11                 | 13                                  | 15    | 17  | 19    | 21  | 23                 | 25              | 27    | 29                 | 31          | 33   | 35          |
| 2          | 4            | 6               | 8          | 10   | 12                 | 14                                  | 16    | 18  | 20    | 22  | 24                 | 26              | 28    | 30                 | 32          | 34   | 36          |
| 24V<br>BUS | DVN +<br>OUT | DVN -<br>OUT    | GND<br>BUS | PE   | 24V<br>(as for 11) | Sys +                               | Sys - | GND | DIN 3 | GND | 24V<br>(as for 11) | DIN 4           | GND   | 24V<br>(as for 11) | GND O<br>DO | DO 2 | GND O<br>DO |

#### Connection example: SK TU4-DEV to SK 200E

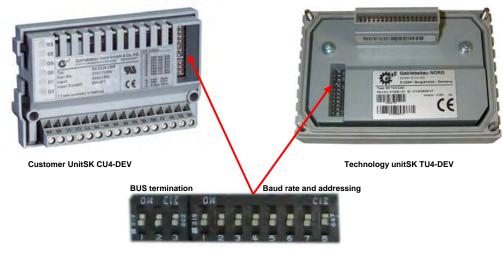


#### Terminal/ Function Data Description / wiring suggestion Parameter [factory setting] Designation 24V Bus External 24V supply 1 24VDC -/+20% Voltage supply at DeviceNet bus ≤ 50 mA , reverse polarity potential protected 2 DVN + 3 DeviceNet Bus + 4 The use of twisted, shielded two-DeviceNet conductor cable is urgently 5 DVN -DeviceNet Bus recommended 6 **GND BUS** Data ground bus 7 Voltage supply at DeviceNet bus potential 8 9 SHLD Bus shield 10 PE Earthing Potential isolation 11 24V External 24V supply 24VDC -/+20% External supply voltage for system bus and digital inputs (DIN1 to 12 ≤ 50mA , reverse polarity DIN4) protected 13 14 Sys + System bus System bus interface data cable + 15 GND Reference potential External supply voltage for system for digital signals bus and digital inputs (DIN1 to DIN4) 16 System bus Sys -System bus interface data cable -17 GND Reference potential External supply voltage for system bus and digital inputs (DIN1 to for digital signals DIN4) 18 Low 0V ... 5V 19 DIN1 **Digital input 1** High 15V ... 30V P174 [I/O DeviceNet DIN1] $R_i = 8.1 k\Omega$ Each digital input has a reaction time of 1ms. Input capacitance 10nF 20 DIN3 Digital input 3 Scan rate 1 ms [I/O DeviceNet DIN3] P174 Inputs as per EN 61131-2 Type 1 GND Reference potential 21 External supply voltage for system for digital signals bus and digital inputs (DIN1 to DIN4) 22 23 24V External 24V supply As for terminal 11 24


#### **Control connection details**

| Term     | inal/ | Function<br>[factory setting]           | Data                                                                           | Description / wiring suggestion                                                                         | Parameter    |
|----------|-------|-----------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------|
| 25       | DIN2  | Digital input 2<br>[I/O DeviceNet DIN2] | Low 0V 5V<br>High 15V 30V<br>R <sub>i</sub> = 8.1kΩ                            | Each digital input has a reaction                                                                       | P174         |
| 26       | DIN4  | Digital input 4<br>[I/O DeviceNet DIN4] | Input capacitance 10nF<br>Scan rate 1 ms<br>Inputs as per EN 61131-2<br>Type 1 | time of 1ms.                                                                                            | P174         |
| 27<br>28 | GND   | Reference potential for digital signals |                                                                                | External supply voltage for system<br>bus and digital inputs (DIN1 to<br>DIN4)                          | -            |
| 29<br>30 | 24V   | External 24V supply                     | As for terminal 11                                                             |                                                                                                         | -            |
|          |       |                                         | Potential isolation                                                            | •                                                                                                       |              |
| 31       | 24V o | External 24V supply for the DOs         | 24VDC -/+20%<br>Up to 1A, according to<br>load<br>reverse polarity protected   | External supply voltage for digital<br>outputs (DO1 and DO2)<br>If necessary, bridge to 24V terminal    | -            |
| 32       | GND o | Reference potential for digital signals |                                                                                | External supply voltage for digital<br>outputs (DO1 and DO2)<br>If necessary, bridge to GND<br>terminal | -            |
| 33       | DO1   | Digital output 1<br>[I/O DeviceNet DO1] | Low = 0V<br>High: 24V<br>Rated current: 500mA                                  | The digital outputs should be used with a separate 24V supply                                           | P150<br>P175 |
| 34       | DO2   | Digital output 2<br>[I/O DeviceNet DO2] | each                                                                           |                                                                                                         | P150<br>P175 |
| 35<br>36 | GND o | Reference potential for digital signals |                                                                                | External supply voltage for digital<br>outputs (DO1 and DO2)<br>If necessary, bridge to GND<br>terminal | -            |

#### Details of M12 connections of the SK TU4-DEV-M12


The special wiring of the M12 round plug connector enables the connection of both single and double sensors, which are equipped with normal M12 system connectors in the standard sensor/actuator configuration.

With the use of M12 round plug connectors, the <u>terminal</u> <u>bar connectors</u> for the digital inputs (Terminals 19, 20, 25, 26) must not be used.



# 2.2.3 Configuration

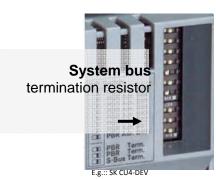
The configuration for all DeviceNet module versions is identical. All necessary settings are made using the hardware via a DIP switch element (3+8 part switching block).



DIP switch 3 + 8 part

#### Addressing

Note:


- DeviceNet address: setting only via DIP switch in binary code
- Permissible address range: 0 ... 63
- Address changes: only become effective after switching the BUS module off and on again

#### **Termination resistor**

The termination of the system bus for the first and last subscribers carried out by connecting the relevant termination resistors (DIP switch).

According to the DeviceNet specification, termination resistors must be used at both physical ends of the bus cable.

#### DeviceNet module (View of DIP switch)



#### SK 200E (View from the inside)



E.g.: SK 200E

#### **Configuration example**

A DeviceNet subscriber SK TU4-DEV is connected to an SK 200E series frequency inverter via a BUS connection unit SK TI4-TU-BUS. The field bus address (DeviceNet address) should be "14" and a baud rate of 250kBaud should be selected. The system bus only includes the frequency inverter and the DeviceNet module. The termination resistor for the system bus is to be set at the frequency inverter. The DIP switches on the DeviceNet module must be set as follows:

| Range              | Significance    |                | DIP-Switch<br>ON - OFF | Configuration<br>example |
|--------------------|-----------------|----------------|------------------------|--------------------------|
|                    | Address-Bit 5   | 2 <sup>5</sup> |                        | 0                        |
| _                  | Address-Bit 4   | 2 <sup>4</sup> |                        | 0                        |
| ssing              | Address-Bit 3   | 2 <sup>3</sup> |                        | 8                        |
| Addressing         | Address-Bit 2   | 2 <sup>2</sup> |                        | 4                        |
|                    | Address-Bit 1   | 2 <sup>1</sup> |                        | 2                        |
|                    | Address-Bit 0   | 2 <sup>0</sup> |                        | 0                        |
|                    |                 | Exam           | ple address:           | 14                       |
| Baud<br>rate       | Baud rate Bit 1 | 2 <sup>1</sup> |                        | 0                        |
| Ba<br>ra           | Baud rate Bit 0 | 2 <sup>0</sup> |                        | 1                        |
|                    |                 | В              | aud rate               | 1 = 250kBaud             |
| ion                | No significance |                |                        | Always OFF               |
| BUS<br>termination | No significance |                |                        | Always OFF               |
| terr               | System bus      | -              |                        | OFF                      |

# 3 Displays and diagnosis

Various diagnosis possibilities are available, depending on the device. Operating conditions or errors are visualised by means of LEDs. PC-based communication or the connection of a parameterisation unit is possible via an RS232 interface (RJ12 diagnostic socket).







DeviceNet Module SK CU4-DEV Status LEDs

DeviceNet Module unit SK TU4-DEV-M12 with SK TI4-TU-BUS and SK TIE4-WMK-TU Status LEDs and viewing window (transparent screw-on cover) for RJ12 diagnostic interface

Frequency inverter SK 200E viewing window (transparent screw-on cover) for RJ12 diagnostic interface, status LEDs, Potentiometer

# 3.1 LED displays

Both the SK 200E frequency inverter and the DeviceNet modules provide LED status and diagnostic displays to indicate the various statuses.

A differentiation into 3 categories is made

- Module or module-specific displays (S and E or DS and DE)
- DeviceNet-specific displays (MS and NS)
- Status displays for the additional digital I/Os of the module (D1/2 or DI1...4 and DO1/2)

The possible displays differ according to the device.

# 3.1.1 Device-specific display versions

#### 3.1.1.1 SK 200E frequency inverter

#### LED **S/E**

The double **LED S/E** indicates the operating status of the frequency inverter by change of colour and different flashing frequencies. A device error is indicated by cyclic red flashing of the LED. The frequency of the flashing signals corresponds to the error number (Manual BU 0200).

#### LEDs BS and BE

The dual colour LEDs <u>BS</u> (BUS State) and <u>BE</u> (BUS Error) indicate the status of the <u>system bus communication module</u>. Various bus communication errors are indicated by means of different flashing frequencies.

A detailed description of the LED displays of the frequency inverter can be found in the main manual (BU0200).



#### LEDs MS and NS

The dual colour LEDs <u>MS</u> (Module Status) and NS (Network Status) indicate the status of the DeviceNet communication.

## LEDs DS and DE

The dual colour LEDs  $\underline{DS}$  (Device State) and  $\underline{DE}$  (Device Error) indicate the status of the module and the status of the system bus.

#### LEDs D1 and D2

The single colour LEDs <u>D1</u> (DIN 1 (digital input 1)) and <u>D2</u> (DIN 2 (digital input 2)) indicate the signal status of the <u>digital inputs of the DeviceNet module</u>. The corresponding LED lights up in case of a High signal.

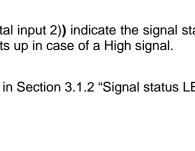
A detailed description of the LED displays for this module can be found in Section 3.1.2 "Signal status LEDs".

# 3.1.1.3 Technology unit SK TU4-DEV(-M12)

#### LEDs MS and NS

The dual colour LEDs <u>MS</u> (Module Status) and <u>NS</u> (Network Status) indicate the status of the DeviceNet communication.

#### LEDs DS and DE


The dual colour LEDs <u>DS</u> (Device State) and <u>DE</u> (Device Error) indicate the status of the module and the status of the system bus.

# LEDs DI1 to DI4 and DO1 and DO2

The single colour LEDs <u>DI1</u> (DIN 1 (digital input 1)) to <u>DI4</u> (DIN 4 (digital input 2)) and <u>DO1</u> (DOUT 1 (digital output 1) and <u>DO2</u> (DOUT 2 (digital output 2)) indicate the signal status of the <u>digital inputs and outputs of the</u> <u>DeviceNet module</u>. The corresponding LED lights up in case of a High signal.

These LEDs are only available in the DeviceNet module SK TU4-DEV-M12.

A detailed description of the LED displays for this module can be found in Section 3.1.2 "Signal status LEDs".





# 3.1.2 Signal status LEDs

This manual only describes the LED signal statuses of the DeviceNet modules. Information for the frequency inverter LEDs (SK 200E) can be found in the relevant manual (BU0200).

## 3.1.2.1 Module-specific displays

The status of the technology unit or the system bus is indicated by the LEDs **DS** and **DE**.

| LED (green)    | LED (red)                        | Significance                                                                                             |
|----------------|----------------------------------|----------------------------------------------------------------------------------------------------------|
| DS             | DE                               | Slow flashing = 2Hz (0.5s cycle)                                                                         |
| → Device State | → Device Error                   | Rapid flashing= 4Hz (0.25s cycle)                                                                        |
|                |                                  |                                                                                                          |
|                |                                  |                                                                                                          |
| OFF            | OFF                              | Technology unit not ready, no control voltage                                                            |
|                | OFF                              | Technology unit ready, no error, at least one frequency inverter is communicating via the system bus     |
| ON ON          |                                  | Technology unit ready, however                                                                           |
|                |                                  | → one or more of the connected frequency inverters has a fault status<br>(see frequency inverter manual) |
| Flashing 0.5s  | OFF                              | Technology unit ready and at least one further subscriber is connected to the system bus, but            |
|                |                                  | ightarrow No frequency inverter on the system bus (or connection interrupted)                            |
|                | _                                | ightarrow Address error for one or more system bus subscribers                                           |
| Flashing 0.5s  |                                  | System bus is in status "Bus Warning"                                                                    |
| 7 - 1          |                                  | $\rightarrow$ Communication on system bus interrupted or                                                 |
|                | Flash interval<br>1 x - 1s pause | ightarrow No other subscriber present on the system bus                                                  |
| Flashing 0.5s  | Flashing 0.25s                   | ightarrow System bus is in status "Bus off" or                                                           |
|                |                                  | ightarrow The system bus 24V power supply was interrupted during operation                               |
|                | Flash interval<br>2 x - 1s pause |                                                                                                          |
| Flashing 0.5s  | Flashing 0.25s                   | → No system bus 24V power supply<br>(system bus is in status "Bus off")                                  |
|                | Flash interval<br>3 x - 1s pause |                                                                                                          |
| Flashing 0.5s  |                                  | → technology unit error present<br>Details: under parameter P170 or P173                                 |
|                | Flash interval<br>4 x - 1s pause |                                                                                                          |
| OFF            | Flashing 0.25s                   | System error, internal program sequence interrupted                                                      |
|                |                                  | $\rightarrow$ EMC interference (observe wiring guidelines!)                                              |
|                | Flash interval                   | → Module faulty                                                                                          |
|                | 17 - 1s pause                    |                                                                                                          |

# 3.1.2.2 DeviceNet displays

The status of the DeviceNet module is indicated by the LEDs MS and NS.

| ● LED (dual)<br>MS<br>→ Module Status | Significance<br>Slow flashing = 2Hz (0.5s cycle)                                                                                                                                 |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| OFF                                   | No voltage supply                                                                                                                                                                |  |  |  |  |
| ON (green)                            | Normal operation, cyclic exchange of data via DeviceNet                                                                                                                          |  |  |  |  |
| Left Flashing 0.5s                    | Module in standby mode, no connection to one or more FIs. (No parameters have yet been exchanged. Therefore setpoint specification via the DeviceNet AC profile is not possible) |  |  |  |  |
|                                       | The baud rate setting for the DeviceNet bus is invalid.                                                                                                                          |  |  |  |  |
| <b>ON</b> (red):                      | Error which cannot be acknowledged. The module may need to be replaced.                                                                                                          |  |  |  |  |
| Flashing 0.5s                         | The module has an error which can be acknowledged                                                                                                                                |  |  |  |  |

| LED (dual)<br>NS<br>→ Network Status | Significance<br>Slow flashing = 2Hz (0.5s cycle)                                                                          |  |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                      | No voltage supply                                                                                                         |  |  |  |  |
|                                      | The module has not carried out the "Dup_MAC_ID" test                                                                      |  |  |  |  |
| 🔵 ON (green)                         | Normal operation, cyclic exchange of data via DeviceNet                                                                   |  |  |  |  |
| Flashing 0.5s                        | The module is online and has carried out the "Dup_MAC_ID" test, but has not set up communication to the other subscribers |  |  |  |  |
| <b>ON (red):</b>                     | Serious communication error, such as Bus Off, Duplicate MAC ID or invalid baud rate setting                               |  |  |  |  |
| Flashing 0.5s                        | Timeout – The I/O connection or the P151 function has triggered a timeout error.                                          |  |  |  |  |
|                                      | The flashing code is displayed for at least 5 seconds.                                                                    |  |  |  |  |

# 3.1.2.3 I/O Displays

The status of additional digital inputs and outputs on the BUS module is indicated by corresponding LEDs (except for SK TU4-DEV(-C)).

| I/O Channel        | Status display           | Significance                                       |  |  |  |  |  |
|--------------------|--------------------------|----------------------------------------------------|--|--|--|--|--|
| Customer Unit SK C | Customer Unit SK CU4-DEV |                                                    |  |  |  |  |  |
|                    | LED (green)              |                                                    |  |  |  |  |  |
| Digital input 1    | ON                       | High potential on terminal <i>C1</i>               |  |  |  |  |  |
| D1                 | OFF                      | Low potential on terminal <i>C1</i>                |  |  |  |  |  |
| Digital input 2    | ON                       | High potential on terminal C2                      |  |  |  |  |  |
| D2                 | OFF                      | Low potential on terminal C2                       |  |  |  |  |  |
| Technology unit SK | TU4-DEV-M12(-C)          |                                                    |  |  |  |  |  |
|                    | (yellow)                 |                                                    |  |  |  |  |  |
| Digital input 1    | ON                       | High potential on terminal 19 or on M12 socket DI1 |  |  |  |  |  |
| DI1                | OFF                      | Low potential on terminal 19 or on M12 socket DI1  |  |  |  |  |  |
| Digital input 2    | ON                       | High potential on terminal 25 or on M12 socket DI2 |  |  |  |  |  |
| DI2                | OFF                      | Low potential on terminal 25 or on M12 socket DI2  |  |  |  |  |  |
| Digital input 3    | ON                       | High potential on terminal 20 or on M12 socket DI3 |  |  |  |  |  |
| DI3                | OFF                      | Low potential on terminal 20 or on M12 socket DI3  |  |  |  |  |  |
| Digital input 4    | ON                       | High potential on terminal 26 or on M12 socket DI4 |  |  |  |  |  |
| DI4                | OFF                      | Low potential on terminal 26 or on M12 socket DI4  |  |  |  |  |  |
| Digital output 1   | ON                       | High potential on terminal 33 or on M12 socket DO1 |  |  |  |  |  |
| DO1                | OFF                      | Low potential on terminal 33 or on M12 socket DO1  |  |  |  |  |  |
| Digital output 2   | ON                       | High potential on terminal 34 or on M12 socket DO2 |  |  |  |  |  |
| DO2                | OFF                      | Low potential on terminal 34 or on M12 socket DO2  |  |  |  |  |  |

# 3.2 RJ12 Diagnostic socket

All participants which are coupled via a common system bus (field bus module / frequency inverter (up to 4 devices)) can be read out and edited/parameterised via an RJ12 diagnostic socket. Either the diagnostic socket of the frequency inverter or those of the bus connection units can be used. This provides users with a convenient facility to perform diagnosis and parameterisation from a central point, without having to access the particular frequency inverter at its location.

Although the customer unit SK CU4-DEV does not have an RJ12 connection, it can be accessed from any other subscriber (frequency inverter) on the same system bus.

| Те  | minal/                                | Function                            | Data                                                                                                 | Description / wiring suggestion           | Parameter |  |  |  |
|-----|---------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|--|--|--|
|     | Designation                           |                                     |                                                                                                      |                                           |           |  |  |  |
| Dia | Diagnostic access / RJ12, RS485/RS232 |                                     |                                                                                                      |                                           |           |  |  |  |
| 1   | RS485 A                               |                                     | Baud rate 9600…38400<br>baud                                                                         |                                           |           |  |  |  |
| 2   | RS485 B                               | Data cable RS485                    | Termination resistor<br>R=120 $\Omega$<br>must be set by the<br>customer at the final<br>subscriber. |                                           |           |  |  |  |
| 3   | GND                                   | Reference potential for Bus signals | 0V digital                                                                                           | R3485_A<br>R3485_B<br>GND<br>TTXD<br>+24V | P502      |  |  |  |
| 4   | 232 TXD                               |                                     | Baud rate 960038400                                                                                  | RJ12: Pin No. 1 6                         | P513      |  |  |  |
| 5   | 232 RXD                               | - Data cable RS232                  | baud                                                                                                 | 1: RS485_A<br>2: RS485_B<br>3: GND        |           |  |  |  |
| 6   | +24V                                  | 24V voltage supply<br>from FI       | $24V\pm20\%$                                                                                         | 4: RS232_TxD<br>5: RS232_RxD<br>6: +24V   |           |  |  |  |

The bus speed of the diagnostic interface is 38400 baud. Communication is carried out according to the USS protocol.

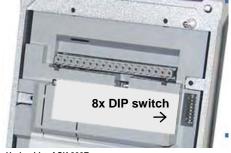


The ParameterBox SK PAR3H is available as a diagnostic tool.

The necessary connecting cables are included in the scope of delivery of the ParameterBox. For a detailed description of use, please refer to Manual BU0040.

Alternatively, diagnosis can be performed via a Windows PC with the aid of **NORD CON** software (available free of charge from <u>www.nord.com</u>). The necessary connection cable (**RJ12 - SUB D9**) is available from Getriebebau Nord GmbH as part number *278910240*. If necessary, an interface converter from SUB D9 to USB2.0 is commercially available.

| Terminal/<br>Designation                     | Function<br>[factory setting]                   | Data                                                                     | Description / wiring suggestion                                                                                                   | Parameter                         |  |  |  |  |
|----------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Accessory cable (optional) for PC connection |                                                 |                                                                          |                                                                                                                                   |                                   |  |  |  |  |
| Adapter cable<br>RJ12 to SUB-D9              | connection to a PC<br>with NORD CON<br>software | Length 3m<br>Assignment RS 232<br>(RxD, TxD, GND)<br>Part. No. 278910240 | Assignment of SUBD9 connector:<br>Pin2: RS232_TxD<br>Pin3: RS232_RxD<br>Pin5: GND<br>$\int_{0}^{RxD} \int_{0}^{TxD} \int_{0}^{1}$ | n.c.<br>GND<br>TXD<br>RxT<br>+24V |  |  |  |  |


No special settings are required to set up communication with the individual diagnostic tools.

The allocation of addresses is defined via the system bus addressing. The display of the diagnostic tool is according to the following table, whereby the frequency inverter which is directly connected to the diagnostic tool is automatically assigned the address " $\underline{0}$ ".

| Device         | External technology unit | Frequency inverter<br>with address 32<br>(system bus) | Frequency inverter<br>with address 34<br>(system bus) | Frequency inverter<br>with address 36<br>(system bus) | Frequency inverter<br>with address 38<br>(system bus) |
|----------------|--------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| USS<br>address | 30                       | 1                                                     | 2                                                     | 3                                                     | 4                                                     |

#### Note:

Setting of the system bus address is carried out via two DIP switches (DIP 1 and 2) on the underside of the SK 200E-frequency inverter. For further details, please refer to the frequency inverter manual (BU 0220). The address of the BUS module is defined as " 30".



Underside of SK 200E

# 4 Commissioning

The DeviceNet module is a slave with "Group 2 Only Server" properties. Devices of this type can set up the following pre-defined connections:

- Explicit Request/Response Message (Parameter Transfer)
- Several static I/O messages (fragmented)
- Polled I/O connection
- Bit-Strobe I/O connection (gateway operation is only possible to a limited extent in this mode)

The transfer rate for parameter access (requested message body format) is 8/8 (8 Bit Class ID / 8 Bit Instance ID).

Clients which wish to use the gateway function of the DeviceNet must support fragmented transfer of the I/O messages.

# 4.1.1 Gateway function

Up to four FIs and the bus module can be controlled via the bus module.

With "explicit messages transfer", the differentiation of the FI is carried out via various classes (see Section "DeviceNet Communication").

A single telegram is sent for the I/O messages (process data). This telegram contains the process data for all four FIs and the bus module. With several FIs on the system bus, the data length exceeds the available 8 bytes, i.e. in gateway operation the data must be fragmented.

The required data size and its allocation to the individual FI is made in the module parameters (P160) to (P165). These parameters are stored in an EEPROM in the module. The exact allocation is explained in the section "DeviceNet Communication".

# 4.1.2 Parameterisation via DeviceNet

All modules and FI parameters can be accessed via DeviceNet. This is carried out via Class 100 to 181.

If parameters are accessed for FIs which are not connected, the bus module responds with the error message "Resource unavailable".

# 4.1.3 Timeout monitoring

Data traffic on the DeviceNet side is monitored via various timeouts defined by DeviceNet and/or P151.

P151 monitoring is triggered if the process data contact is interrupted or the process data in the USS profile are transferred with an invalid control word. Transfer of process data with a data length 0 (PLC in programming mode) also results in an error.

Sending of BitStrobe telegrams causes a reset of the P151 function, although no new process values have been sent.

Parameter P513 is not evaluated in the bus module. The error behaviour of the individual FI can be defined via this.

# 4.1.4 Input filtering

The four inputs are cyclically read every 250µs. This data is input into a filter routine. The minimum time for a change of flank is 1ms.

# 4.2 DeviceNet process data

#### 4.2.1 I/O messages

The assembly object in the DeviceNet module is static. However, it is possible to set various data lengths and profiles in the assembly object via the parameters P160 to P165. The parameters are adopted by the bus modules when the I/O message connection is set up.

With this it is possible to set data lengths of between 2 and 33 bytes. Any data size (in steps of 8 bits) can be assigned to the individual FI. The lengths of the input and output data may be different.

The operating modes "Polled I/O" and "Change of state/Cyclic I/O" are fully supported by the module.

The operating mode "Bit Strobe" is subject to the restriction that the bus module <u>may only return a maximum of</u> <u>8 bytes</u>. This must be noted for the setting of the parameters P160 and P161 – P165! Each MAC ID is assigned a bit in the "Bit Strobe" telegram. This bit must be zero in order for the process data to be forwarded to the FI. If the value is one, the last valid value is retained.

#### 4.2.1.1 Transfer of 16 & 32 bit process data

The 16 and 32 bit process data must be sent in "Little Endian" format (see the following example).

| Bit 0                                  | Bit 1     | Bit 2        | Bit 3         | Bit 4         | Bit 5          | Bit 6    | Bit 7     |
|----------------------------------------|-----------|--------------|---------------|---------------|----------------|----------|-----------|
| Control word Setpoint 1                |           | Setpoint 2   |               | Setpoint 3    |                |          |           |
| 16 bit 32 bit (e.g. position setpoint) |           |              |               |               | 16 bit (e.g.   | speed)   |           |
| Low byte                               | High byte | Low Low byte | Low High byte | High Low byte | High High byte | Low byte | High byte |

#### 4.2.1.2 Structure of the process data

Data for up to 5 devices is sent in the fragmented telegram. The transmission sequence corresponds to the following illustration

| Area 1     | Area 2 | Area 3 | Area 4 | Area 5 |
|------------|--------|--------|--------|--------|
| Bus module | FI 1   | FI 2   | FI 3   | FI 4   |

The data for the bus module and then for FI 1 to 4 are sent in sequence. If one of the devices is not parameterised, the next area moves up. For example, if the bus module is not accessed, the first bytes are assigned to FI 1.

# 4.2.2 Interpretation of data in the Assembly Object

In the EDS file it is assumed that there is only one FI, or that all FIs have the same setting. This must also be represented by the ODVA. The following official table results from this. Otherwise, all possible or meaningful combinations must be recorded.

| Instance | Profile  | Length  | Significance                                                                      | Parameterisation (P160) |
|----------|----------|---------|-----------------------------------------------------------------------------------|-------------------------|
| 20       | AC-Drive | 4       | STW + SW1 (only one FI)                                                           | 1                       |
| 70       | AC-Drive | 4       | ZSW + IW1 (only one FI)                                                           |                         |
| 21       | AC-Drive | 4       | STW + SW1 (only one FI)                                                           | 2                       |
| 71       | AC-Drive | 4       | ZSW + IW1 (only one FI)                                                           |                         |
| 100      | NORDAC   | 5       | Bus module outputs + STW + SW1 (only one FI)                                      | 3                       |
| 110      | NORD-AC  | 5       | Bus module inputs + ZSW + IW1 (only one FI)                                       |                         |
| 101      | NORD-AC  | 8       | STW + SW1 + SW2 + SW3<br>(only one FI)                                            | 4                       |
| 111      | NORD-AC  | 8       | ZSW + IW1 + IW2 + IW3<br>(only one FI)                                            |                         |
| 102      | NORD-AC  | 33      | Bus module outputs + four FIs<br>Structure for each FI:<br>STW + SW1 + SW2 + SW3  | 5                       |
| 112      | NORD-AC  | 33      | Bus module inputs + four FIs<br>Structure for each FI:<br>ZSW + IW1 + IW2 + IW3   | -                       |
| 120      | NORD-AC  | 1 to 33 | Control values<br>All combinations possible, parameterisation via<br>P161 to P165 | 0                       |
| 130      | NORDAC   | 1 to 33 | Status values<br>All combinations possible, parameterisation via<br>P161 to P165  |                         |

Explanation of abbreviations:

STW = FI control wordSW1 - 3 = FI setpoints 1 to 3

ZSW = FI status word

IW1 - 3 = FI actual value 1 to 3

# 4.2.3 Explanation of the I/O Assembly Data for the AC Drive Profile

| Instance | Byte | Bit7                       | Bit 6           | Bit 5            | Bit 4      | Bit 3             | Bit 2             | Bit 1   | Bit 0   |  |  |
|----------|------|----------------------------|-----------------|------------------|------------|-------------------|-------------------|---------|---------|--|--|
| 20       | 0    |                            |                 |                  |            |                   | Fault Reset       |         | Run Fwd |  |  |
|          | 1    |                            |                 |                  |            |                   |                   |         |         |  |  |
|          | 2    | Speed setpo                | pint (Low byte  | )                |            |                   |                   |         |         |  |  |
|          | 3    | Speed setpo                | pint (High byte | e)               |            |                   |                   |         |         |  |  |
| 21       | 0    |                            | NetRef          | NetCtrl          |            |                   | Fault Reset       | Run Rev | Run Fwd |  |  |
|          | 1    |                            |                 |                  |            |                   |                   |         |         |  |  |
|          | 2    | Speed setpoint (Low byte)  |                 |                  |            |                   |                   |         |         |  |  |
|          | 3    | Speed setpoint (High byte) |                 |                  |            |                   |                   |         |         |  |  |
| 70       | 0    |                            |                 |                  |            |                   | Running1          |         | Faulted |  |  |
|          | 1    |                            |                 |                  |            |                   |                   |         |         |  |  |
|          | 2    | Actual speed (Low byte)    |                 |                  |            |                   |                   |         |         |  |  |
|          | 3    | Actual speed (High byte)   |                 |                  |            |                   |                   |         |         |  |  |
| 71       | 0    | At Ref                     | Ref From<br>Net | Ctrl From<br>Net | Ready      | Running2<br>(Rev) | Running1<br>(Fwd) | Warning | Faulted |  |  |
|          | 1    | Drive State                | (explanation    | in Class 41 At   | tribute 6) |                   |                   |         |         |  |  |
|          | 2    | Actual spee                | d (Low byte)    |                  |            |                   |                   |         |         |  |  |
|          | 3    | Actual spee                | d (High byte)   |                  |            |                   |                   |         |         |  |  |

#### 4.2.3.1 Description of the bits in the control and status word

#### Run Forward

High level = The FI is switched on and the motor accelerates to its setpoint

Low level = The motor is braked on the set ramp to 0 rpm and the FI switched off

#### Run Reverse

As for "Run Forward" but with the opposite direction of rotation.

#### Fault Reset

A Low - High flank resets an error in the FI

#### **NetCtrl**

With a High level, the control words sent via the DeviceNet bus are valid The settings P509 and P510 in the FI are not affected

#### NetRef

With a High level, the setpoint words sent via the DeviceNet bus are valid The settings P509 and P510 in the FI are not affected

#### Fault

High level indicates an error in the FI

#### Warning

High level indicates a warning in the FI. See Bit 7 in the USS status word

#### Run 1

FI has a clockwise rotating field

#### Run 2

FI has an anticlockwise rotating field

#### Ready

FI is switched on, i.e. voltage is applied to the motor

#### **Ctrl From Net**

The FI is controlled via DeviceNet. Only the status of "NetCtrl" is imaged in the control word. The parameters P509 & P510 are not queried.

### **Ref From Net**

The setpoint for the FI comes via DeviceNet. Only the status of "Netref" is imaged in the control word. The parameters P509 & P510 are not queried.

#### At Ref

The FI has attained the setpoint speed

# 4.2.4 Explanation of the I/O Assembly Data for the NORD-AC Profile

| Instance                              | Byte | Bit7                         | Bit 6                              | Bit 5                   | Bit 4 | Bit 3   | Bit 2   | Bit 1   | Bit 0   |  |  |  |
|---------------------------------------|------|------------------------------|------------------------------------|-------------------------|-------|---------|---------|---------|---------|--|--|--|
| 100                                   | 0    |                              |                                    |                         |       |         |         | Out2    | Out 1   |  |  |  |
|                                       | 1    | Control word (Low component) |                                    |                         |       |         |         |         |         |  |  |  |
|                                       | 2    | Control wor                  | Control word (High component)      |                         |       |         |         |         |         |  |  |  |
|                                       | 3    | Setpoint 1 (                 | Setpoint 1 (Low component ) → P546 |                         |       |         |         |         |         |  |  |  |
| 4 Setpoint 1 (High component ) → P546 |      |                              |                                    |                         |       |         |         |         |         |  |  |  |
| 110                                   | 0    |                              |                                    |                         |       | Input 4 | Input 3 | Input 2 | Input 1 |  |  |  |
|                                       | 1    | Status word (Low component)  |                                    |                         |       |         |         |         |         |  |  |  |
|                                       | 2    | Status word                  | Status word (High component)       |                         |       |         |         |         |         |  |  |  |
|                                       | 3    | Actual value                 | e 1 (Low com                       | conent) $\rightarrow$ P | 543   |         |         |         |         |  |  |  |
|                                       | 4    | Actual value                 | e 1 (High com                      | ponent) $\rightarrow$ F | °543  |         |         |         |         |  |  |  |

#### Out 1 to 2

Enables the outputs of the bus module to be set, if present

#### Input 1 to 4

Here, up to four inputs of the bus module can be read out.

The structure of the NORD AC assemblies is shown on the basis of Instance 100/110.

If it is present in the instance, the bus module itself is always accessed in the first byte. The inputs and outputs can be set and read out. Further functionality is not possible.

After this, the structure is always the same: the control/status word and the setpoint/actual values follow. If several FIs are accessed in sequence, the control/status word of the next FI follows the last setpoint/actual value.

The structure of the control and status words can be obtained from the old documentation. Setting of the setpoint and actual values is made via the FI parameters P543 to P548.

# 4.2.5 Generation of variable data lengths in Instance 120/130

If parameter P160 is set to 0, the structure of the Instance can be freely defined via parameters P161 to P165. The length of the output and input data does not need to be identical.

|               | Para | Index [0]          | Index [1]           | Index [2]     |
|---------------|------|--------------------|---------------------|---------------|
| Bus<br>module | P161 | Input length       | Output length       |               |
| FI 1          | P162 | Status data length | Control data length | Drive profile |
| FI 2          | P163 | Status data length | Control data length | Drive profile |
| FI 3          | P164 | Status data length | Control data length | Drive profile |
| FI 4          | P165 | Status data length | Control data length | Drive profile |

| Parameter | Value range   | Significance                           | Explanation                                     |
|-----------|---------------|----------------------------------------|-------------------------------------------------|
| P16x [0]  | P162-P165 = 0 | 0 = Data length 0 byte                 | Length of status data from FI x                 |
|           | to 8          | 1 = Data length 1 byte<br>2 – 8 = etc. | Data length = $0 \rightarrow$ FI does not exist |
|           | P161= 0 to 1  | 2 - 0 = 610.                           | Structure:                                      |
|           |               |                                        | ZST   IW1   IW2   IW3                           |
| P16x [1]  | P162-P165 = 0 | 0 = Data length 0 byte                 | Length of control data for FI x                 |
|           | to 8          | 1 = Data length 1 byte<br>2 – 8 = etc. | Data length = $0 \rightarrow$ FI does not exist |
|           | P161=0 to 1   | 2 - 0 - 60.                            | Structure:                                      |
|           |               |                                        | STW   SW1   SW2   SW3                           |
| P16x [2]  | P162-P165 = 0 | 0 = AC-Drive profile 1                 | Profile used by FI x on the DeviceNet bus       |
|           | to 2          | 1 = AC-Drive profile 2                 |                                                 |
|           |               | 2 = NORDAC profile                     |                                                 |

#### Example:

| P161 = {1,1}         | $\rightarrow$ | Inputs/Outputs of the bus module                                                      |
|----------------------|---------------|---------------------------------------------------------------------------------------|
| P162 = {8,8,2}       | $\rightarrow$ | Control/Status word and 3 Setpoint/Actual value in the NORD-AC profile for FI 1       |
| P163 = {4,8,2}       | $\rightarrow$ | Control/Status word and 1 setpoint and 3 actual value in the NORD-AC profile for FI 2 |
| P164 = {4,4,0}       | $\rightarrow$ | 1 Setpoint/Actual value in AC drive profile for FI 3                                  |
| P165 = {0,0,0}       | $\rightarrow$ | FI 4 is not accessed                                                                  |
| ut data length for t | he hus        | module: 21 Byte                                                                       |

Input data length for the bus module: 21 Byte

Output data length for the bus module bytes: 17 Byte

# 4.3 DeviceNet objects

# 4.3.1 Class 1 – Identity Object

| Inst. | Attr. | Access | Name          | Туре     | Description                                                                                 |
|-------|-------|--------|---------------|----------|---------------------------------------------------------------------------------------------|
| 1     | 1     | Get    | Vendor ID     | UINT     | Manufacturer identification number                                                          |
| 1     | 2     | Get    | Device type   | UINT     | Product type                                                                                |
| 1     | 3     | Get    | Product code  | UINT     | Identification of device                                                                    |
| 1     | 4     | Get    | Revision      | STRUCT   | Software version                                                                            |
|       |       |        |               | USINT    | Number of main version                                                                      |
|       |       |        |               | USINT    | Number of ancillary version                                                                 |
| 1     | 5     | Get    | Status        | UINT     | Device status                                                                               |
|       |       |        |               |          | Bit 0<br>Device is accessed via a master                                                    |
|       |       |        |               |          | Bit 2<br>Configuration loaded from the FI<br>Bit 8<br>One of the connected FIs has an error |
| 1     | 6     | Get    | Serial number | UDINT    | Serial number. Not supported at present                                                     |
| 1     | 7     | Get    | Product Name  | SHORTSTR | Name of device                                                                              |

# 4.3.2 Class 3 – DeviceNet Object

| Inst. | Attr. | Access  | Name                     | Туре   | Description                                                                                                                                                              |
|-------|-------|---------|--------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1     | Get     | MAC ID                   | USINT  | Address of the bus module. Set via DIP switches                                                                                                                          |
| 1     | 2     | Get     | Baud rate                | USINT  | Baud rate. Set via DIP switches                                                                                                                                          |
| 1     | 3     | Get     | BOI                      | BOOL   | <b>FALSE</b><br>After a Bus Off, the CAN driver remains in this<br>state. The module must be reset.<br><b>TRUE</b><br>After a Bus Off, the CAN chip resets automatically |
| 1     | 4     | Get/Set | Bus Off Counter          | USINT  | Number of Bus Off states for the bus module. Can only be written with 0 for reset.                                                                                       |
| 1     | 5     | Get     | Allocation               | Struct |                                                                                                                                                                          |
|       |       |         | Information              | Byte   | Allocation of active communication<br>Bit0 = Explicit Message                                                                                                            |
|       |       |         |                          |        | Bit1 = Polled<br>Bit2 = Bit Strobed<br>Bit3 = Multicast<br>Bit4 = Change of State<br>Bit5 = Cyclic<br>Bit6 = Acknowledge Suppression<br>Bit7 = Reserve                   |
|       |       |         |                          | USINT  | MAC ID of master                                                                                                                                                         |
| 1     | 6     | Get     | MAC ID Switch<br>Changed | BOOL   | TRUE = If there has been a change to the ID switches since the last reset or power up.                                                                                   |

| 1 | 7 | Get | Baud Rate Switch<br>Changed | BOOL  | TRUE = If there has been a change to the baud rate switches since the last reset or power up. |
|---|---|-----|-----------------------------|-------|-----------------------------------------------------------------------------------------------|
| 1 | 8 | Get | MAC ID Switch<br>Value      | USINT | Current ID setting on the DIP switch                                                          |
| 1 | 9 | Get | Baud Rate<br>Switch Value   | USINT | Current baud rate setting on the DIP switch                                                   |

# 4.3.3 Class 4 – Assembly Object

| Inst. | Attr. | Access  | Туре                   | Description                                     |
|-------|-------|---------|------------------------|-------------------------------------------------|
| 20    | 3     | Get/Set | STRUCT<br>4 Byte       | Write AC drive profile 1 to FI                  |
| 21    | 3     | Get/Set | STRUCT<br>4 Byte       | Write AC drive profile 2 to FI                  |
| 70    | 3     | Get     | STRUCT<br>4 Byte       | Read AC drive profile 1 from FI                 |
| 71    | 3     | Get     | STRUCT<br>4 Byte       | Read AC drive profile 2 from FI                 |
| 100   | 3     | Get/Set | STRUCT<br>5 Byte       | Describe NORD AC profile 1 to FI                |
| 101   | 3     | Get/Set | STRUCT<br>8 Byte       | Describe NORD AC profile 2 to FI                |
| 102   | 3     | Get/Set | STRUCT<br>33 Byte      | Describe NORD AC profile 3 to FI                |
| 110   | 3     | Get     | STRUCT<br>5 Byte       | Read out NORD AC profile 1 from FI              |
| 111   | 3     | Get     | STRUCT<br>8 Byte       | Read out NORD AC profile 2 from FI              |
| 112   | 3     | Get     | STRUCT<br>33 Byte      | Read out NORD AC profile 3 from FI              |
| 120   | 3     | Get/Set | STRUCT<br>1 to 33 Byte | Describe variables of NORD AC profile 1 to FI   |
| 130   | 3     | Get     | STRUCT<br>1 to 33 Byte | Read out variables of NORD AC profile 1 from FI |

The instances 70, 71, 110, 111, 112 and 130 are only updated if I/O messages are received. Transmission to instances 20, 70, 100, 101, 102 & 120 is only meaningful if no I/O messages are sent, as otherwise these would overwrite the contents of the explicit response message. Reading and writing can only be carried out for the active instance.

.

# 4.3.4 Class 5 – DeviceNet Connection Object

The settings of the current connection can be read out via this object. The following instances are supported:

- Instance 1 = Explicit message
- Instance 2 = Polling
- Instance 3 = Bit Strobe
- Instance 4 = COS/Cyclic

| Attr. | Access  | Name                               | Туре  | Description |
|-------|---------|------------------------------------|-------|-------------|
| 1     | Get     | State                              | USINT |             |
| 2     | Get     | Instance_type                      | USINT |             |
| 3     | Get     | transportClass trigger             | BYTE  |             |
| 4     | Get     | Produced connection ID             | UINT  |             |
| 5     | Get     | Consumed connection ID             | UINT  |             |
| 6     | Get     | Initial comm. characteristics      | BYTE  |             |
| 7     | Get     | Produced connection size           | UINT  |             |
| 8     | Get     | Consumed connection size           | UINT  |             |
| 9     | Get/Set | Expected packet rate               | UINT  |             |
| 12    | Get     | Watchdog timeout action            | USINT |             |
| 13    | Get     | Produced connection path<br>length | UINT  |             |
| 14    | Get     | Produced connection path           | EPATH |             |
| 15    | Get     | Consumed connection path length    | UINT  |             |
| 16    | Get     | Consumed connection path           | EPATH |             |
| 17    | Get     | Production inhibit time            | UINT  |             |

## 4.3.5 Class 40 – Motor Data Object

| Attr. | Access  | Name         | Туре  | Description                                                    |  |
|-------|---------|--------------|-------|----------------------------------------------------------------|--|
| 3     | Get     | Motor type   | USINT | Motor type. Only type 7 = Asynchronous motors are<br>supported |  |
| 6     | Get/Set | RatedCurrent | UINT  | Rated current of motor Unit = 100mA                            |  |
| 7     | Get/Set | RatedVoltage | UINT  | Nominal voltage Unit = V                                       |  |
| 8     | Get/Set | RatedPower   | UDINT | Nominal power Unit = W                                         |  |
| 9     | Get/Set | RatedFreq    | UINT  | Nominal frequency Unit = Hz                                    |  |
| 12    | Get     | PoleCount    | UINT  | Number of poles of motor                                       |  |

In Class 40, Instances 1 to 4 are supported, whereby the value of the instance is addressed to the relevant FI on the system bus. E.g. FI 2 on the system bus is accessed via Instance 2.

# 4.3.6 Class 41 – Control Supervisor Object

| Attr. | Access | Name       | Туре  | Description                                                                                                          |
|-------|--------|------------|-------|----------------------------------------------------------------------------------------------------------------------|
| 3     | Set    | Run Fwd    | BOOL  | Starts / stops the motor $\rightarrow$ clockwise direction                                                           |
| 4     | Set    | Run Rev    | BOOL  | Starts / stops the motor $\rightarrow$ anticlockwise direction                                                       |
| 5     | Set    | NetCtrl    | BOOL  | Determines the validity of Run1 & Run2<br>1 = Control via DeviceNet<br>0 = Control via DeviceNet invalid             |
| 6     | Get    | State      | USINT | FI status<br>1 = Start<br>2 = Not Ready<br>3 = Ready<br>4 = Enabled<br>5 = Stopping<br>6 = Fault_Stop<br>7 = Faulted |
| 7     | Get    | Running1   | BOOL  | If True, the FI is enabled via Run1 or it is in "Fault_Stop" mode and is braking in a clockwise direction.           |
| 8     | Get    | Running2   | BOOL  | If TRUE, the FI is enabled via Run1 or it is in "Fault_Stop" mode and is braking in an anticlockwise direction.      |
| 9     | Get    | Ready      | BOOL  | If TRUE, the FI is in status "Ready" or "Enabled".                                                                   |
| 10    | Get    | Faulted    | BOOL  | If TRUE, the relevant FI is in a faulted condition.                                                                  |
| 11    | Get    | Warning    | BOOL  | TRUE indicates that there is a warning for the relevant FI.                                                          |
| 12    | Set    | FaultRst   | BOOL  | An error present in the FI is deleted with a flank from FALSE to TRUE.                                               |
| 13    | Get    | FaultCode  | UINT  | Displays the current or last active error code.                                                                      |
| 15    | Get    | CtrFromNet | BOOL  | Determines the validity of Run1 & Run2<br>1 = Control via DeviceNet<br>0 = Control via DeviceNet invalid             |

In Class 41, Instances 1 to 4 are supported, whereby the value of the instance is addressed to the relevant FI on the system bus. E.g. FI 2 on the system bus is accessed via Instance 2.

# 4.3.7 Class 42 – AC- Drive Object

| Attr. | Access  | Name          | Туре  | Description                                                                                            |
|-------|---------|---------------|-------|--------------------------------------------------------------------------------------------------------|
| 3     | Get     | AtReference   | BOOL  | Actual value corresponds to the setpoint                                                               |
| 4     | Get/Set | NetRef        | BOOL  | Setpoints sent via DeviceNet are enabled.                                                              |
| 6     | Get     | DriveMode     | USINT | This parameter is always 0 (specific to vendor). The drive mode can be obtained via FI parameter P509. |
| 7     | Get     | SpeedActual   | INT   | Actual speed in rpm.                                                                                   |
| 8     | Get/Set | SpeedRef      | INT   | Setpoint speed in rpm.                                                                                 |
| 9     | Get     | CurrentActual | INT   | Actual current in the motor phases, resolution in 0.1A                                                 |
| 15    | Get     | PowerActual   | INT   | Current power, 0.01kW                                                                                  |
| 16    | Get     | InputVoltage  | INT   | Input voltage of the FI in V                                                                           |
| 17    | Get     | OutputVoltage | INT   | Output voltage of the FI in V                                                                          |
| 18    | Get/Set | AccelTime     | UINT  | Run-up time for the speed ramp in ms from 0 rpm to HighSpdLimit                                        |
| 19    | Get/Set | DecelTime     | UINT  | Braking time for the speed ramp in ms from LowSpdLimit to 0 rpm.                                       |
| 20    | Get/Set | LowSpdLimit   | UINT  | Minimum possible speed in rpm                                                                          |
| 21    | Get/Set | HighSpdLimit  | UINT  | Maximum possible speed in rpm                                                                          |
| 29    | Get     | RefFromNet    | BOOL  | Status of setpoint enabling via DeviceNet                                                              |
|       |         |               |       | 0 = Setpoint via DeviceNet disabled<br>1 = Setpoint via DeviceNet enabled                              |

In Class 42, Instances 1 to 4 are supported, whereby the value of the instance is addressed to the relevant FI on the system bus. E.g. FI 2 on the system bus is accessed via Instance 2.

## 4.3.8 Class 43 – Acknowledge Handler Object

| Inst. | Attr. | Access  | Name                                    | Туре  | Description                                                                                                                   |
|-------|-------|---------|-----------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1     | Get/Set | Acknowledge<br>Timer                    | UINT  | Time before the Acknowledge signal is<br>sent                                                                                 |
|       |       |         |                                         |       | Range from 1ms to 65535ms<br>Resolution = 1ms                                                                                 |
| 1     | 2     | Get/Set | Retry Limit                             | USINT | Number of Acknowledge timeouts at<br>which a RetryLimit_Reached event is<br>executed                                          |
| 1     | 3     | Get     | COS Producing<br>Connection<br>instance | UINT  | Connection Instance contains the path<br>of the I/O application object which<br>receives information from the Ack<br>Handler. |

### 4.3.9 Class 100 to 181 – Access to FI and bus module parameters

All parameters of the bus module and the FIs connected to the bus module can be accessed via the DeviceNet. The FIs connected to bus module can be accessed via various Class ranges. See following table.

| DeviceNet Class | Accessed device                       | FI Offset |
|-----------------|---------------------------------------|-----------|
| 100 to 107      | FI 1                                  | 0         |
| 110 to 117      | FI 2                                  | 10        |
| 120 to 127      | FI 3                                  | 20        |
| 130 to 137      | FI 4                                  | 30        |
| 181             | Bus module (Class 180 – 189 reserved) |           |

Coding of the FI parameters in DeviceNet format is carried out as follows:

#### Parameter number to DeviceNet:

Class = (100 + PNo. / 100) + FI Offset Attribute = PNo. mod 100 (mod = modulus operation → Attribute = Remainder (PNo. / 100)) Instance = SubIndex + 1

#### DeviceNet to parameter number:

PNo. = ((Class - FI Offset) - 100) \* 100 + Attribute SubIndex = Instance - 1

#### Examples:

| FU1, P103, SubIndex 0 | $\rightarrow$ | Class = 101, Attribute = 3, Instance = 1  |
|-----------------------|---------------|-------------------------------------------|
| FU4, P103, SubIndex 2 | $\rightarrow$ | Class = 131, Attribute = 3, Instance = 3  |
| FU1, P546, SubIndex 0 | $\rightarrow$ | Class = 105, Attribute = 46, Instance = 1 |
| FU3, P546, SubIndex 0 | $\rightarrow$ | Class = 125, Attribute = 46, Instance = 1 |

## 4.3.10 Class 199 - NORDAC Index Object

All FI parameters can be accessed via this object. Access to bus module parameters or the parameters of other modules on the system bus is not possible.

Access is obtained by setting the parameter number and the sub index. Then the parameter can be read or written via attribute 3 or 4 of the parameter. The relevant FI is selected via the instance, i.e. with Instance = 1, FI 1 is accessed, or with Instance = 4, FI 4 is accessed.

| Inst.  | Attr. | Description                   | Туре  | Access     |
|--------|-------|-------------------------------|-------|------------|
| 1 to 4 | 1     | Parameter number              | UINT  | Read/Write |
| 1 to 4 | 2     | Parameter Index               | USINT | Read/Write |
| 1 to 4 | 3     | Read / write 16 bit parameter | INT   | Read/Write |
| 1 to 4 | 4     | Read / write 32 bit parameter | DINT  | Read/Write |

Attribute 4 with 32 bit access is not contained in the EDS file, as otherwise the commissioning tools would access a parameter via attributes 3 and 4. This results in an error message for an incorrect parameter size (32Bit access to a 16Bit parameter).

In the EDS file and the bus module, attribute 1 is set to 0 as default. Parameter accesses with parameter 0 are ignored and always receive a positive response, even if the relevant FI is not online. This prevents unnecessary error messages.

# 5 Parameterisation

In order to enable communication via DeviceNet, the frequency inverter and the DeviceNet technology unit must be parameterised accordingly.

With the DeviceNet protocol, the inverter parameters are mapped in the range 100 to 109:

- Class = 100 + parameter number / 100
- Attribute = Parameter number % 100
- Instance = SubIndex + 1

or

- Parameter number = (Class -100) \* 100 + Attribute
- SubIndex = Instance 1

## 5.1 Parameterising the SK 200E frequency inverter

The following list of parameters for the frequency inverter series SK 200E are directly relevant for the operation of the frequency inverter via DeviceNet. A complete list of parameters for the frequency inverter (SK 200E) can be found in the relevant manual (BU0200).

## 5.1.1 Basic parameters (P100)

| Paramete<br>{Factory |                    | Setting value / Description / Note                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Device | Supervisor                                                                                                                              | Parameter<br>set |
|----------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|
| P120                 | [-01]<br><br>[-04] | Option monitoring                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | S                                                                                                                                       |                  |
| 0 2<br>{ 1 }         |                    | Array levels:                                                                                                                   | Setting value for each array:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                                                                                                         |                  |
|                      |                    | [-01] = Extension 1 (BUS-TB)<br>[-02] = Extension 2 (IO-TB)<br>[-03] = Extension 3 (reserved)<br>[-04] = Extension 4 (reserved) | <ul> <li>0 = Monitoring OFF</li> <li>1 = Auto, communication is only monitored if an existing communication is interrupted. If a module which was previously present is not found after switching on the mains, this does not result in an error Monitoring only becomes active when an extension starts communication with the FI.</li> <li>2 = Monitoring active immediately; the FI starts monitoring the corresponding module immediately after it is switched on. If the module is not detected on switch-on, the FI remains in the status "not ready for switch-o for 5 seconds and then triggers an error message.</li> </ul> |        | ated. If a<br>sent is not<br>s, this does<br>then an<br>hith the FI.<br>he FI starts<br>dule<br>. If the<br>on, the FI<br>or switch-on" |                  |

# 5.1.2 Control terminal parameters (P400)

| Parameter<br>{Factory setting}                                       |                                                                                                                                                                                                                                                                    | Setting value / Description / Note                                                                                                                                                           |                                                                                                          | Device                                                                          | Supervisor                               | Parameter<br>set |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|------------------|
| P420                                                                 | [-01]<br><br>[-04]                                                                                                                                                                                                                                                 | Digital inpu                                                                                                                                                                                 | its 1 to 4                                                                                               |                                                                                 |                                          |                  |
| 0 72<br>{ [-01] = 01<br>{ [-02] = 02<br>{ [-03] = 04<br>{ [-04] = 05 | In the SK 200E, up to 4 free with the versions SK 215E a function "Safe Stop".         1 }       [-01] = Digital input 1 (I         2 }       [-02] = Digital input 2 (I         4 }       [-03] = Digital input 3 (I         5 }       [-03] = Digital input 3 (I | Digital input 1 (DIN1), Enable right as<br>Digital input 2 (DIN1), Enable left as f<br>Digital input 3 (DIN3), fixed frequency<br>terminal 23<br>Digital input 4 (DIN4), fixed frequency     | a fourth digital ing<br>s factory setting,<br>cactory setting, c<br>y 1 (P465 [-01])<br>y 2 (P465 [-02]) | out is always the<br>control terminal<br>ontrol terminal 2<br>as factory settin | a input for the<br>21<br>2<br>g, control |                  |
|                                                                      |                                                                                                                                                                                                                                                                    | SK 215/235E $\rightarrow$ "Safe Stop", control terminal 24<br>Various functions can be programmed. For the complete list, please refer to the SK 200E<br>frequency inverter manual (BU0200). |                                                                                                          |                                                                                 |                                          |                  |

Excerpt...

| Value                   | Function                                                                                                    | Description                                                                               | Signal |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------|--|--|--|
| 00                      | No function                                                                                                 | Input switched off.                                                                       |        |  |  |  |
| <br>14 <sup>1</sup><br> | Remote control                                                                                              | With bus system control, Low level switches the control to control via control terminals. | High   |  |  |  |
| 1 Also                  | Also effective for bus control (RS232, RS485, CANbus, CANopen, DeviceNet, Profibus, InterBus, AS-Interface) |                                                                                           |        |  |  |  |

| Parameter<br>{Factory setting} |                    | Setting value / Description / Note                                                                                                         | Device                         | Supervisor      | Parameter<br>set |  |  |
|--------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|------------------|--|--|
| P480                           | [-01]<br><br>[-12] | Function bus I/O In Bits                                                                                                                   |                                |                 |                  |  |  |
| 0 72<br>{ [-01] = 0            | 11 \               | The bus I/O In Bits are perceived as digital inputs. They can be set to the same functions (P420).                                         |                                |                 |                  |  |  |
| $\{ [-02] = 0 \}$              | •                  | These I/O bits can also be used in combination with the AS Interface (SK 225E or SK 235E) or the I/O extension (SK CU4-IOE or SK TU4-IOE). |                                |                 |                  |  |  |
| { [-03] = 0                    | )5 }               | <b>[-01]</b> = Bus I/O In Bit 0 <b>[-07]</b> = Bus I/O In Bit 6                                                                            |                                |                 |                  |  |  |
| { [-04] = 1                    | 2 }                | <b>[-02]</b> = Bus I/O In Bit 1 <b>[-08]</b> = Bus I/O In Bit 7                                                                            |                                |                 |                  |  |  |
| { [-051                        | 2] = 00 }          | <b>[-03]</b> = Bus I/O In Bit 2 <b>[-09]</b> = Flag 1                                                                                      |                                |                 |                  |  |  |
|                                |                    | <b>[-04]</b> = Bus I/O In Bit 3                                                                                                            | . <b>[-10]</b> = Flag 2        |                 |                  |  |  |
|                                |                    | <b>[-05]</b> = Bus I/O In Bit 4                                                                                                            | [-11] = Bit 8 BUS control word |                 |                  |  |  |
|                                |                    | <b>[-06]</b> = Bus I/O In Bit 5                                                                                                            | . <b>[-12]</b> = Bit 9 BU      | IS control word |                  |  |  |
|                                |                    | The possible functions for the bus In bits can be found in the table of functions for the digital inputs in parameter P420.                |                                |                 |                  |  |  |

| Parameter<br>{Factory s |                    | Setting value / Description / Note                                                                                                         | Device                  | Supervisor              | Parameter<br>set |  |  |
|-------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------------|--|--|
| P481                    | [-01]<br><br>[-10] | Function Bus I/O Out bits                                                                                                                  |                         |                         |                  |  |  |
| 0 39<br>{ all 0 }       |                    | The bus I/O Out bits are perceived as multi-funct functions (P434).                                                                        | ion relay output        | s. They can be s        | set to the sam   |  |  |
| { an 0 }                |                    | These I/O bits can also be used in combination with the AS Interface (SK 225E or SK 235E) or the I/O extension (SK CU4-IOE or SK TU4-IOE). |                         |                         |                  |  |  |
|                         |                    | <b>[-01]</b> = Bus I/O Out Bit 0                                                                                                           | <b>[-07]</b> =Flag 1    |                         |                  |  |  |
|                         |                    | <b>[-02]</b> = Bus I/O Out Bit 1                                                                                                           | <b>[-08]</b> = Flag 2   |                         |                  |  |  |
|                         |                    | <b>[-03]</b> = Bus I/O Out Bit 2                                                                                                           | <b>[-09]</b> = Bit 10 B | US status word          |                  |  |  |
|                         |                    | <b>[-04]</b> = Bus I/O Out Bit 3                                                                                                           | <b>[-10]</b> = Bit 13 B | US status word          |                  |  |  |
|                         |                    | <b>[-05]</b> = Bus I/O Out Bit 4                                                                                                           |                         |                         |                  |  |  |
|                         |                    | <b>[-06]</b> = Bus I/O Out Bit 5                                                                                                           |                         |                         |                  |  |  |
|                         |                    | The possible functions for the Bus Out Bits can P434.                                                                                      | be found in the         | table of function       | ns for the rela  |  |  |
| P482                    | [-01]<br><br>[-08] | Standardisation of bus I/O Out bits                                                                                                        |                         |                         |                  |  |  |
| -400 40<br>{ all 100 }  | 00 %               | Adjustment of the limit values of the bus Out bits be output negative.                                                                     | s. For a negative       | e value, the outp       | but function w   |  |  |
| { an iou }              |                    | Once the limit value is reached and positive values signal, for negative setting values a Low signal.                                      | ues are delivere        | d, the output pr        | oduces a Hig     |  |  |
| P483                    | [-01]<br><br>[-08] | Hysteresis of bus I/O Out bits                                                                                                             |                         | S                       |                  |  |  |
| 1 … 100 %<br>{ all 10 } |                    | Difference between switch-on and switch-off poin                                                                                           | t to prevent osci       | l<br>llation of the out | l<br>put signal. |  |  |

# 5.1.3 Supplementary parameter (P500)

| Parameter<br>{Factory setting} | Setting value                                                                                                                                                                       | e / Description / Note                                                                                                                                 | Device  | Supervisor | Parameter<br>set |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------------------|--|--|
| P509                           | Control v                                                                                                                                                                           | vord source                                                                                                                                            |         | S          |                  |  |  |
| 0 4                            | Selection of                                                                                                                                                                        | the interface via which the FI is cont                                                                                                                 | rolled. |            |                  |  |  |
| {0}                            | 0 = Control terminals or keyboard control <sup>**</sup> with the SimpleBox (if (P510)=0), the<br>ParameterBox or via BUS I/O Bits.                                                  |                                                                                                                                                        |         |            |                  |  |  |
|                                | 1 = Only control terminals *, the FI can only be controlled via the digital and analog input signals or via the Bus I/O Bits.                                                       |                                                                                                                                                        |         |            |                  |  |  |
|                                | 2 = USS control word *, the control signals (enable, rotation direction, etc.) are transferred via the RS485 interface, the setpoint via the analog input or the fixed frequencies. |                                                                                                                                                        |         |            |                  |  |  |
|                                | 3 = System bus * ( control via DeviceNet )                                                                                                                                          |                                                                                                                                                        |         |            |                  |  |  |
|                                | 4 = Syste                                                                                                                                                                           | m bus broadcast                                                                                                                                        |         |            |                  |  |  |
|                                | *)                                                                                                                                                                                  | <ul> <li>Keyboard control (SimpleBox, ParameterBox, PotentiometerBox) is disabled,<br/>parameterisation is still possible.</li> </ul>                  |         |            |                  |  |  |
|                                | **)                                                                                                                                                                                 | <ul> <li>If the communication during keyboard control is interrupted (time out 0.5 sec),</li> <li>FI will disable without an error message.</li> </ul> |         |            |                  |  |  |

**NOTE:** As an alternative to setting the parameter, **System Bus Broadcast** can be selected with DIP switch 3.

| P510                           | [-01]<br>[-02] | Setpoint source                                                                                                                                                                                                                        |                      | S                         |                |  |  |
|--------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|----------------|--|--|
| 0 4                            |                | Selection of the setpoint source to be paramet                                                                                                                                                                                         | erised.              |                           |                |  |  |
| { [-01] = 0 }<br>{ [-02] = 0 } |                | [-01] = Main setpoint source                                                                                                                                                                                                           | <b>[-02</b> ] = Subs | sidiary setpoint s        | source         |  |  |
|                                |                | Selection of the interface via which the FI rece                                                                                                                                                                                       | ves the setpoint.    |                           |                |  |  |
|                                |                | 0 = Auto: The source of the auxiliary setpoint is<br>automatically derived from the setting in the<br>parameter P509 >Interface<                                                                                                       |                      | 2 = USS<br>3 = System bus |                |  |  |
|                                |                | <ul> <li>1 = Control terminals, digital and analog inputs control<br/>the frequency, including fixed frequencies</li> <li>4 = System bus I</li> </ul>                                                                                  |                      |                           | proadcast      |  |  |
| P513                           |                | Telegram downtime                                                                                                                                                                                                                      |                      | S                         |                |  |  |
| -0.1 / 0.0 /<br>0.1 100        |                | Monitoring function of the active bus interface. Following receipt of a valid telegram, the next one must arrive within the set period. Otherwise the FI reports an error and switches off with the error message E010 >Bus Time Out<. |                      |                           |                |  |  |
| { 0.0 }                        |                | <b>0.0 = Off</b> : Monitoring is switched off.                                                                                                                                                                                         |                      |                           |                |  |  |
|                                |                | <b>-0.1 = no error</b> : Even if communication betwee Box removed, etc.), the FI will continue to open                                                                                                                                 |                      | I is interrupted (        | e.g. 24V error |  |  |
| P514                           |                | CAN baud rate (system bus)                                                                                                                                                                                                             |                      | S                         |                |  |  |
| 0 7<br>{ 5 }                   |                | Setting of the transfer rate (transfer speed) we must have the same baud rate setting.                                                                                                                                                 | ia the system bus    | s interface. All b        | us subscribers |  |  |
| [0]                            |                | <b>0</b> = 10kBaud <b>3</b> = 100kB                                                                                                                                                                                                    | aud e                | <b>3 =</b> 500kBaud       |                |  |  |
|                                |                | <b>1</b> = 20kBaud <b>4</b> = 125kB                                                                                                                                                                                                    | ud 7                 | 7 = 1Mbaud *              |                |  |  |
|                                |                | <b>2</b> = 50kBaud <b>5</b> = 250kB                                                                                                                                                                                                    | ud                   |                           |                |  |  |
|                                |                |                                                                                                                                                                                                                                        | *) Safe o            | peration cannot           | be guaranteed  |  |  |

| Parameter<br>{Factory setting}   | Setting value / Description / Note                                                                                                                                                                               | Device                                                                                                                                                     | Supervisor                                                                       | Parameter<br>set |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------|--|--|
| P515 [-01]<br><br>[-03]          | CAN address (system bus)                                                                                                                                                                                         |                                                                                                                                                            | s                                                                                |                  |  |  |
| 0 255 dec                        | Setting of the system bus address.                                                                                                                                                                               |                                                                                                                                                            |                                                                                  |                  |  |  |
| { all 32 dec}                    | [-01] = Receive address for system bus                                                                                                                                                                           |                                                                                                                                                            |                                                                                  |                  |  |  |
| or { all 20 hex}                 | [-02] = Broadcast – Receive address for                                                                                                                                                                          | system bus (slave)                                                                                                                                         |                                                                                  |                  |  |  |
|                                  | [-02] = Broadcast – Transmit address for                                                                                                                                                                         | system bus (master)                                                                                                                                        |                                                                                  |                  |  |  |
| NOTE:                            | If up to four SK 200E are to be linked via th<br>$\rightarrow$ FI 1 = 32, FI 2 = 34, FI 3 = 36, FI 4 = 38                                                                                                        |                                                                                                                                                            | dresses must be                                                                  | e set as follows |  |  |
|                                  | The system bus addresses should be set via                                                                                                                                                                       | a the DIP switches 1/2                                                                                                                                     | 2 (Section 2.2.3)                                                                |                  |  |  |
| P543 [-01]<br><br>[-03]          | Actual bus value 1 3                                                                                                                                                                                             |                                                                                                                                                            | S                                                                                | Р                |  |  |
| 0 22                             | The return value can be selected for bus ac                                                                                                                                                                      | uation in this parame                                                                                                                                      | ter.                                                                             |                  |  |  |
| { [-01] = 01 }                   | <b>NOTE:</b> For further details, please                                                                                                                                                                         | refer to the descriptio                                                                                                                                    | n for P418.                                                                      |                  |  |  |
| { [-02] = 04 }                   | [-01] = Actual bus value 1                                                                                                                                                                                       |                                                                                                                                                            |                                                                                  |                  |  |  |
| { [-03] = 09 }                   | [-02] = Actual bus value 2 (only for PPO Type 2 or 4)                                                                                                                                                            |                                                                                                                                                            |                                                                                  |                  |  |  |
|                                  | [-03] = Actual bus value 3 (only for PPO Type 2 or 4)                                                                                                                                                            |                                                                                                                                                            |                                                                                  |                  |  |  |
| Possible values which can be set |                                                                                                                                                                                                                  |                                                                                                                                                            |                                                                                  |                  |  |  |
|                                  | Possible values which can be set:                                                                                                                                                                                |                                                                                                                                                            |                                                                                  |                  |  |  |
|                                  | Possible values which can be set:<br>0 = Off                                                                                                                                                                     | <b>10 =</b> 11 Reserved                                                                                                                                    | b                                                                                |                  |  |  |
|                                  | <ul><li>0 = Off</li><li>1 = Actual frequency</li></ul>                                                                                                                                                           | <b>12</b> = Bus Out bits 0.                                                                                                                                | 7                                                                                |                  |  |  |
|                                  | <ul> <li>0 = Off</li> <li>1 = Actual frequency</li> <li>2 = Actual speed</li> </ul>                                                                                                                              | <b>12 =</b> Bus Out bits 0.<br><b>13 =</b> 16 Reserved                                                                                                     | 7<br>d                                                                           |                  |  |  |
|                                  | <ul> <li>0 = Off</li> <li>1 = Actual frequency</li> <li>2 = Actual speed</li> <li>3 = Current</li> </ul>                                                                                                         | <ul> <li>12 = Bus Out bits 0.</li> <li>13 = 16 Reserved</li> <li>17 = Value analog i</li> </ul>                                                            | 7<br>d<br>nput 1 (P400)                                                          |                  |  |  |
|                                  | <ul> <li>0 = Off</li> <li>1 = Actual frequency</li> <li>2 = Actual speed</li> <li>3 = Current</li> <li>4 = Torque current (100% = P112)</li> </ul>                                                               | <ul> <li>12 = Bus Out bits 0.</li> <li>13 = 16 Reserved</li> <li>17 = Value analog i</li> <li>18 = Value analog i</li> </ul>                               | 7<br>d<br>nput 1 (P400)<br>nput 2 (P405)                                         | 1e (P503)        |  |  |
|                                  | <ul> <li>0 = Off</li> <li>1 = Actual frequency</li> <li>2 = Actual speed</li> <li>3 = Current</li> <li>4 = Torque current (100% = P112)</li> <li>5 = State of digital inputs and outputs <sup>2</sup></li> </ul> | <ul> <li>12 = Bus Out bits 0.</li> <li>13 = 16 Reserved</li> <li>17 = Value analog i</li> <li>18 = Value analog i</li> <li>19 = Setpoint freque</li> </ul> | 7<br>d<br>nput 1 (P400)<br>nput 2 (P405)<br>ency master valu                     |                  |  |  |
|                                  | <ul> <li>0 = Off</li> <li>1 = Actual frequency</li> <li>2 = Actual speed</li> <li>3 = Current</li> <li>4 = Torque current (100% = P112)</li> </ul>                                                               | <ul> <li>12 = Bus Out bits 0.</li> <li>13 = 16 Reserved</li> <li>17 = Value analog i</li> <li>18 = Value analog i</li> </ul>                               | 7<br>d<br>nput 1 (P400)<br>nput 2 (P405)<br>ency master valu<br>ency after maste | er value ramp    |  |  |

Bit 0 = DigIn 1 Bit 4 = DigIn 5 Bit 8 = Reserved Bit 12 = Out 1 Bit 1 = DigIn 2 Bit 5 = DigIn 6 Bit 9 = Reserved Bit 13 = Out 2 Bit 2 = DigIn 3 Bit 6 = DigIn 7 Bit 10 = Reserved Bit 14 = Out 3 Bit 3 = DigIn 4 Bit 7 = Reserved Bit 11 = Reserved Bit 15 = Out 4

 $<sup>^{2}</sup>$  The assignment of the dig. inputs for P543 = 5

#### Supplementary Manual DeviceNet for NORDAC SK 200E

| Parameter<br>{Factory setting} | Setting value / Description / Note            |          | Device              | Supervisor        | Parameter<br>set |
|--------------------------------|-----------------------------------------------|----------|---------------------|-------------------|------------------|
| P546 [-01]<br><br>[-03]        | Function Bus setpoint 1 3                     |          |                     | S                 | Р                |
| 0 24                           | In this parameter, a function is allocated to | the ou   | Itput setpoint dur  | ing bus actuatio  | on.              |
| { [-01] = 01 }                 | <b>NOTE:</b> For further details, please ref  | er to th | e description for I | P400.             |                  |
| { [-02] = 00 }                 | … [-01] = Bus setpoint value 1                |          |                     |                   |                  |
| { [-03] = 00 }                 | [-02] = Bus setpoint value 2 (only for        | ΡΡΟ Τι   | /pe 2 or 4)         |                   |                  |
|                                | [-03] = Bus setpoint value 3 (only for        | -        | -                   |                   |                  |
|                                | Possible values which can be set:             |          |                     |                   |                  |
|                                | <b>0</b> = Off                                | 11 =     | Limiting torque c   | urrent            |                  |
|                                | <b>1</b> = Setpoint frequency (16 bit)        | 12 =     | Torque current s    | witch-off limit   |                  |
|                                | <b>2</b> = Frequency addition                 | 13 =     | Limiting current    |                   |                  |
|                                | <b>3</b> = Frequency subtraction              | 14 =     | Current switch-or   | ff limit          |                  |
|                                | <b>4</b> = Minimum frequency                  |          | Ramp time           |                   |                  |
|                                | <b>5</b> = Maximum frequency                  | 16 =     | Lead torque (P2     | 14) multiplicatio | n                |
|                                | 6 = PI process controller actual value        |          | Servo mode torq     |                   |                  |
|                                | 7 = PI process controller setpoint            | -        | Curve travel calc   |                   |                  |
|                                | 8 = Actual frequency PID                      |          | Digital In bits 0   |                   |                  |
|                                | <b>9</b> = Actual PID frequency limited       | 20 =     | 24 reserved for     | Posicon           |                  |
|                                | <b>10</b> = Actual PID frequency monitored    |          |                     |                   |                  |

| Parameter<br>{Factory setting} |                | Setting value / Description / Note | Device | Supervisor | Parameter<br>set |
|--------------------------------|----------------|------------------------------------|--------|------------|------------------|
| P552                           | [-01]<br>[-02] | System bus master cycle time       |        | S          |                  |

0/0.1...100.0 ms In this parameter, the cycle time for the system bus master mode and the CAN open encoder is set (see P503/514/515): {0}

... [-01] = Cycle time for system bus master functions

... [02] = Cycle time for system bus absolute value encoder

With the setting **0** "Auto" the default value (see table) is used.

According to the baud rate set, there are different minimum values for the actual cycle time:

| Baud rate | Minimum value tz | System bus master<br>default | System bus absolute default |
|-----------|------------------|------------------------------|-----------------------------|
| 10kBaud   | 10ms             | 50ms                         | 20ms                        |
| 20kBaud   | 10ms             | 25ms                         | 20ms                        |
| 50kBaud   | 5ms              | 10ms                         | 10ms                        |
| 100kBaud  | 2ms              | 5ms                          | 5ms                         |
| 125kBaud  | 2ms              | 5ms                          | 5ms                         |
| 250kBaud  | 1ms              | 5ms                          | 2ms                         |
| 500kBaud  | 1ms              | 5ms                          | 2ms                         |
| 1000kBaud | 1ms              | 5ms                          | 2ms                         |

| P560                                                                                                                                                           | Save in                                                                                                                                                                                                                   | EEPROM |  | S |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|---|--|
| 0 1<br>{ 1 }                                                                                                                                                   | 0 = Changes to the parameter settings are no longer saved on the EEPROM. Previously saved settings remain stored, even if the FI is disconnected from the mains; however new changes are not saved after a mains failure. |        |  |   |  |
|                                                                                                                                                                | <ul> <li>1 = All parameter changes are automatically written to the EEPROM and remain stored there even if the FI is disconnected from the mains supply.</li> </ul>                                                       |        |  |   |  |
| <b>NOTE:</b> If BUS communication is used to implement parameter changes, i ensured that the maximum number of write cycles (100,000 x) in the E not exceeded. |                                                                                                                                                                                                                           |        |  |   |  |

# 5.1.4 Information parameters (P700)

| Parameter<br>{Factory set | tting}             | Setting value / Description / Note                                                                                                                                                                                |                                                                           | Device                                                  | Supervisor        | Parameter<br>set     |  |
|---------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|-------------------|----------------------|--|
| P700                      |                    | Current error                                                                                                                                                                                                     |                                                                           |                                                         |                   |                      |  |
| 0.0 21.4                  |                    | Current error present. Further details are                                                                                                                                                                        | descr                                                                     | ibed in the freque                                      | ncy inverter man  | ual (BU0200).        |  |
|                           |                    | <b>SimpleBox:</b> Descriptions of the individence messages.                                                                                                                                                       | lual e                                                                    | rror numbers ca                                         | n be found in     | the point Erroi      |  |
|                           |                    | <b>ParameterBox:</b> Errors are displayed in p<br>Error messages.                                                                                                                                                 | plain t                                                                   | ext, further inform                                     | nation can be for | und in the poin      |  |
| P701                      | [-01]<br><br>[-05] | Last fault 15                                                                                                                                                                                                     |                                                                           |                                                         |                   |                      |  |
| 0.0 21.4                  |                    | This parameter stores the last 5 faults. manual (BU0200).                                                                                                                                                         | Furthe                                                                    | er details are des                                      | cribed in the fre | quency inverter      |  |
|                           |                    | With the SimpleBox the corresponding selected and confirmed with the ENTER I                                                                                                                                      |                                                                           |                                                         |                   |                      |  |
| P740                      | [-01]<br><br>[-13] | Process data bus In                                                                                                                                                                                               |                                                                           |                                                         | S                 |                      |  |
| 0000 FFF                  | FF (hex)           | This parameter provides information about the actual control word (STW) and the setpoints (SW1-3) that are transferred via the bus systems.<br>For values to be displayed, a bus system must be selected in P509. |                                                                           |                                                         |                   |                      |  |
|                           |                    | [-01 ] = Control word Control word, source from P509.                                                                                                                                                             |                                                                           |                                                         |                   |                      |  |
|                           |                    | [-02] = Setpoint 1 (P546)                                                                                                                                                                                         |                                                                           |                                                         |                   |                      |  |
|                           |                    | <b>[-03 ]</b> = Setpoint 2 (P547)                                                                                                                                                                                 | Setpoint data from main setpoint P510 - 01.                               |                                                         |                   |                      |  |
|                           |                    | [-04] = Setpoint 3 (P548)                                                                                                                                                                                         |                                                                           |                                                         |                   |                      |  |
|                           |                    | <b>[-05 ] =</b> Bus I/O In Bits (P480)                                                                                                                                                                            | The displayed value depicts all Bus In Bit source linked with <i>or</i> . |                                                         |                   |                      |  |
|                           |                    | [-06 ] = Parameter data In 1                                                                                                                                                                                      |                                                                           |                                                         |                   |                      |  |
|                           |                    | [-07] = Parameter data In 2                                                                                                                                                                                       | Data                                                                      |                                                         | han transform On  | der lebel (AK)       |  |
|                           |                    | [-08 ] = Parameter data In 3                                                                                                                                                                                      | Para                                                                      | a during parame<br>ameter number (P<br>x (IND), Paramet | NU),              |                      |  |
|                           |                    | [-09 ] = Parameter data In 4                                                                                                                                                                                      |                                                                           |                                                         |                   | _,                   |  |
|                           |                    | <b>[-10 ]</b> = Parameter data In 5                                                                                                                                                                               |                                                                           |                                                         |                   |                      |  |
|                           |                    | [-11 ] = Setpoint 1                                                                                                                                                                                               |                                                                           |                                                         |                   |                      |  |
|                           |                    | <b>[-12 ]</b> = Setpoint 2                                                                                                                                                                                        | Setp<br>(Bro                                                              |                                                         |                   | unction value<br>03) |  |
|                           |                    | [-13] = Setpoint 3                                                                                                                                                                                                | (Broadcast), if P509/510 = 4 (P502/P503)                                  |                                                         |                   |                      |  |

| Parameter<br>{Factory setting} | Setting value                                                        | ue / Description / Note                                                                      |             | Device            | Supervisor       | Parameter<br>set |
|--------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|-------------------|------------------|------------------|
| P741 [-01]<br><br>[-10]        | Process                                                              | s data bus Out                                                                               |             |                   | S                |                  |
| 0000 FFFF (hex)                |                                                                      | eter provides information abour via the bus systems.                                         | t the       | actual status wor | d and the actual | values that are  |
|                                | [-01 ] = 3                                                           | Status word                                                                                  | Stat        | us word, source f | rom P509.        |                  |
|                                | <b>[-02]</b> = A                                                     | ctual value 1 (P543)                                                                         |             |                   |                  |                  |
|                                | <b>[-03]</b> = A                                                     | ctual value 2 (P544)                                                                         |             |                   |                  |                  |
|                                | <b>[-04]</b> = A                                                     | ctual value 3 (P545)                                                                         |             |                   |                  |                  |
|                                | [-05] =                                                              | Bus I/O Out Bit (P481) The displayed value depicts all Bus Out Bit s linked with <i>or</i> . |             |                   | out Bit sources  |                  |
|                                | [-06 ] =                                                             | 6] = Parameter data Out 1                                                                    |             |                   |                  |                  |
|                                | [-07 ] = Parameter data Out 2                                        |                                                                                              |             |                   |                  |                  |
|                                | <b> [-08]</b> = Parameter data Out 3 Data during parameter transfer. |                                                                                              |             |                   |                  |                  |
|                                | <b>[-09]</b> = F                                                     | Parameter data Out 4                                                                         |             |                   |                  |                  |
|                                | <b>[-10] =</b> F                                                     | Parameter data Out 5                                                                         |             |                   |                  |                  |
| P748                           | System                                                               | bus status                                                                                   |             |                   |                  |                  |
| 0000 FFFF (hex)                | Shows the                                                            | status of the system bus.                                                                    |             |                   |                  |                  |
| or                             | Bit 0                                                                | 24V Bus supply voltage                                                                       |             |                   |                  |                  |
| 0 65535 (dec)                  | Bit 1                                                                | CANbus in "Bus Warning" sta                                                                  | tus         |                   |                  |                  |
|                                | Bit 2                                                                | CANbus in "Bus Off" status                                                                   |             |                   |                  |                  |
|                                | Bit 3 5:                                                             | Vacant                                                                                       |             |                   |                  |                  |
|                                | Bit 6                                                                | The protocol of the CAN modu                                                                 | ule is      | 0 = CAN / 1 :     | = CANopen        |                  |
|                                | Bit 7                                                                | Vacant                                                                                       |             |                   |                  |                  |
|                                | Bit 8                                                                | "Bootsup Message" sent                                                                       |             |                   |                  |                  |
|                                | Bit 9                                                                | CANopen NMT state                                                                            |             |                   |                  |                  |
|                                | Bit 10                                                               | CANopen NMT state                                                                            |             |                   |                  |                  |
|                                |                                                                      | CANopen NMT state Bit 10                                                                     | 0 E         | Bit 9             |                  |                  |
|                                |                                                                      | Stopped0Pre-Operational0Operational1                                                         | 0<br>1<br>0 | l l               |                  |                  |
| P749                           |                                                                      | tch status                                                                                   |             |                   |                  |                  |

| P749            | P749 DIP switch status |                                       |                   |                |  |
|-----------------|------------------------|---------------------------------------|-------------------|----------------|--|
| 0000 00FF (hex) | This param             | eter shows the current setting of the | FI DIP switch (Se | ection 2.2.3). |  |
| or              | Bit 0                  | DIP switch 1                          |                   |                |  |
| 0 255 (dec)     | Bit 1                  | DIP switch 2                          |                   |                |  |
|                 | Bit 2                  | DIP switch 3                          |                   |                |  |
|                 | Bit 3                  | DIP switch 4                          |                   |                |  |
|                 | Bit 4                  | DIP switch 5                          |                   |                |  |
|                 | Bit 5                  | DIP switch 6                          |                   |                |  |
|                 | Bit 6                  | DIP switch 7                          |                   |                |  |
|                 | Bit 7                  | DIP switch 8                          |                   |                |  |

# 5.2 Parameterisation of the bus module (SK CU4-... or SK TU4-...)

The following parameters relate to the bus modules.

# 5.2.1 BUS module standard parameters (P150)

| Parameter<br>{Factory setting} | Setting value / Description / Note                                                                                                                                                    | Device | Supervisor | Parameter<br>set |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|------------------|--|--|--|
| P150                           | Set relays                                                                                                                                                                            |        |            |                  |  |  |  |
| 0 4                            | 0 = Outputs controlled via DeviceNet                                                                                                                                                  |        |            |                  |  |  |  |
| {0}                            | 1 = Outputs OFF                                                                                                                                                                       |        |            |                  |  |  |  |
|                                | <b>2</b> = Output 1 ON (DO1)                                                                                                                                                          |        |            |                  |  |  |  |
|                                | <b>3</b> = Output 2 ON (DO2)                                                                                                                                                          |        |            |                  |  |  |  |
|                                | 4 = Outputs 1 and 2 ON                                                                                                                                                                |        |            |                  |  |  |  |
| P151                           | Timeout for external bus                                                                                                                                                              |        |            |                  |  |  |  |
| 0 32767 ms                     | Monitoring function of the relevant active bus techr                                                                                                                                  |        |            |                  |  |  |  |
| {0}                            | telegram, the next one must arrive within the set period. Otherwise the inverter reports an error and switches off with the error message E010 / E10.2 >Bus Time Out< >Bus Time Out<. |        |            |                  |  |  |  |
|                                | <b>0</b> = <b>Off:</b> Monitoring is switched off.                                                                                                                                    |        |            |                  |  |  |  |
|                                |                                                                                                                                                                                       |        |            |                  |  |  |  |

| P152 | Factory setting                                                                                                          |           |                    |            |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|------------|--|--|--|
| 0 1  | By selecting the appropriate value and confirm                                                                           |           |                    |            |  |  |  |
| {0}  | parameter range is entered in the factory setting. Once the setting has been r the parameter returns automatically to 0. |           |                    |            |  |  |  |
|      | 0 = No change: Does not change the parameter                                                                             | risation. |                    |            |  |  |  |
|      | <ul> <li>1 = Load factory settings: The complete param<br/>setting. All originally parameterised data are</li> </ul>     |           | e FI is reset to t | he factory |  |  |  |

# 5.2.2 DeviceNet Parameters

| Parameter<br>{Factory setting} | Setting value / Description / Note                                                                                                          | Device | Supervisor | Parameter<br>set |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|------------------|--|--|
| P160                           | Assembly selection                                                                                                                          |        |            |                  |  |  |
| 0 5                            | Determination of the validity of SDO and PDO objects.<br>(see Objects 1200 (hex) 1203 (hex), 1400 (hex)1404 (hex) and 1800 (hex)1804 (hex)) |        |            |                  |  |  |
| {3}                            | Possible values which can be set:                                                                                                           |        |            |                  |  |  |
|                                | <b>0</b> = Instance 120 & 130                                                                                                               |        |            |                  |  |  |
|                                | <b>1</b> = Instance 20 & 70                                                                                                                 |        |            |                  |  |  |
|                                | 2 = Instance 21 & 71                                                                                                                        |        |            |                  |  |  |
|                                | <b>3</b> = Instance 100 & 110                                                                                                               |        |            |                  |  |  |
|                                | 4 = Instance 101 & 111                                                                                                                      |        |            |                  |  |  |
|                                | 5 = Instance 102 & 112                                                                                                                      |        |            |                  |  |  |

| Paramete<br>{Factory s |                         | Setting value / Description / Note                         | Device | Supervisor | Parameter<br>set |
|------------------------|-------------------------|------------------------------------------------------------|--------|------------|------------------|
| P161                   | [-01]                   | Config. process data for the bus                           |        |            |                  |
|                        |                         | module                                                     |        |            |                  |
| 0 1                    | [-02]                   |                                                            |        |            |                  |
| 01                     |                         | [-01] = Inputs                                             |        |            |                  |
| (0)                    |                         | [-02] = Outputs                                            |        |            |                  |
| {0}                    |                         | [-02] – Outputs                                            |        |            |                  |
|                        |                         | Possible values which can be set:                          |        |            |                  |
|                        |                         | <b>0</b> = Module does not transmit                        |        |            |                  |
|                        |                         | 1 = Data length 1 Byte                                     |        |            |                  |
|                        |                         |                                                            |        |            |                  |
| P162                   | [-01]<br>[-02]<br>[-03] | Configuration of FI process data                           |        |            |                  |
| 0 8                    |                         |                                                            |        |            |                  |
|                        |                         | [-01] = Status values                                      |        |            |                  |
| {0}                    |                         | [-02] = Control values                                     |        |            |                  |
|                        |                         | Possible values which can be set:                          |        |            |                  |
|                        |                         | <b>0</b> = FI does not exist                               |        |            |                  |
|                        |                         | 1 = Data length in Bytes                                   |        |            |                  |
|                        |                         | ···                                                        |        |            |                  |
|                        |                         | <b>8</b> = Data length in Bytes                            |        |            |                  |
|                        |                         |                                                            |        |            |                  |
|                        |                         | [-03] = Profile                                            |        |            |                  |
|                        |                         | <b>0</b> = AC drive profile 1                              |        |            |                  |
|                        |                         | 1 = AC drive profile 2                                     |        |            |                  |
|                        |                         | 2 = NORDAC profile                                         |        |            |                  |
| P163                   | [-01]<br>[-02]<br>[-03] | Configuration of FI 2 process data                         |        |            |                  |
| 0 8                    |                         |                                                            | •      |            |                  |
|                        |                         | [-01] = Status values                                      |        |            |                  |
| {0}                    |                         | [-02] = Control values                                     |        |            |                  |
|                        |                         | Describle or board is here to act                          |        |            |                  |
|                        |                         | Possible values which can be set:<br>0 = FI does not exist |        |            |                  |
|                        |                         | 1 = Data length in Bytes                                   |        |            |                  |
|                        |                         |                                                            |        |            |                  |
|                        |                         | 9 = Data length in Bytes                                   |        |            |                  |
|                        |                         |                                                            |        |            |                  |
|                        |                         | [-03] = Profile                                            |        |            |                  |
|                        |                         | <b>0</b> = AC drive profile 1                              |        |            |                  |
|                        |                         | <b>1</b> = AC drive profile 2                              |        |            |                  |

| Paramete  | r                       |                                    |        |            | Davis            |
|-----------|-------------------------|------------------------------------|--------|------------|------------------|
| Factory s |                         | Setting value / Description / Note | Device | Supervisor | Parameter<br>set |
| P164      | [-01]<br>[-02]<br>[-03] | Configuration of FI 3 process data |        |            |                  |
| 0 8       |                         |                                    | -      |            |                  |
|           |                         | [-01] = Status values              |        |            |                  |
| {0}       |                         | [-02] = Control values             |        |            |                  |
|           |                         | Possible values which can be set:  |        |            |                  |
|           |                         | <b>0</b> = FI does not exist       |        |            |                  |
|           |                         | 1 = Data length in Bytes           |        |            |                  |
|           |                         |                                    |        |            |                  |
|           |                         | <b>10</b> = Data length in Bytes   |        |            |                  |
|           |                         | [-03] = Profile                    |        |            |                  |
|           |                         | <b>0</b> = AC drive profile 1      |        |            |                  |
|           |                         | <b>1</b> = AC drive profile 2      |        |            |                  |
|           |                         | 2 = NORDAC profile                 |        |            |                  |
| P165      | [-01]<br>[-02]<br>[-03] | Configuration of FI process data   |        |            |                  |
| 0 8       |                         |                                    |        | 1          | 1                |
|           |                         | [-01] = Status values              |        |            |                  |
| {0}       |                         | [-02] = Control values             |        |            |                  |
|           |                         | Possible values which can be set:  |        |            |                  |
|           |                         | <b>0</b> = FI does not exist       |        |            |                  |
|           |                         | 1 = Data length in Bytes           |        |            |                  |
|           |                         |                                    |        |            |                  |
|           |                         | 11 = Data length in Bytes          |        |            |                  |
|           |                         | [-03] = Profile                    |        |            |                  |
|           |                         | <b>0</b> = AC drive profile 1      |        |            |                  |
|           |                         | 1 = AC drive profile 2             |        |            |                  |
|           |                         | <b>2</b> = NORDAC profile          |        |            |                  |

| Parameter<br>{Factory s |                    | Setting value / Description / Note                                                                                     | Device | Supervisor | Parameter<br>set |  |  |  |  |  |  |  |
|-------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|--------|------------|------------------|--|--|--|--|--|--|--|
| P170                    | <br>[-01]<br>[-02] | Current error                                                                                                          |        |            |                  |  |  |  |  |  |  |  |
| 0 9999                  |                    | Current errror. Further details in Section 0 "Error Messages".                                                         |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | [-01 ] = Current module error                                                                                          |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | [-02] = Last module error                                                                                              |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | Possible values:                                                                                                       |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | <b>1000</b> = EEPROM error                                                                                             |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | <b>1010</b> = System bus 24V missing                                                                                   |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | <b>1020</b> = System bus timeout (see time in P151)                                                                    |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | 1030 = System bus OFF                                                                                                  |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | Specific to DeviceNet                                                                                                  |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | 5210 = DeviceNet bus off                                                                                               |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | 5211 = Address already allocated                                                                                       |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | 5212 = illegal baud rate                                                                                               |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | 5220 = DeviceNet timeout                                                                                               |        |            |                  |  |  |  |  |  |  |  |
| P171                    | [-01]<br>          | Software version/ Revision                                                                                             |        |            |                  |  |  |  |  |  |  |  |
|                         | [-03]              |                                                                                                                        |        |            |                  |  |  |  |  |  |  |  |
| 0,0 999<br>{ 0.0 }      | 9.9                | This parameter shows the software and revision<br>information about any special versions of the h<br>standard version. |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | [-01] = Software version                                                                                               |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | [-02] = Software revision                                                                                              |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | <b>[-03]</b> = Special version                                                                                         |        |            |                  |  |  |  |  |  |  |  |
| P172                    |                    | Configuration                                                                                                          |        |            |                  |  |  |  |  |  |  |  |
| 0 2                     |                    | The version can be queried in this parameter.                                                                          |        |            |                  |  |  |  |  |  |  |  |
| { 0 }                   |                    | Possible values:                                                                                                       |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | <b>0=</b> internal module                                                                                              |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | 1= external module                                                                                                     |        |            |                  |  |  |  |  |  |  |  |
|                         |                    | 2 = Bus TO via SPI                                                                                                     |        |            |                  |  |  |  |  |  |  |  |

# 5.2.3 BUS module information parameters, general (P170)

| Parameter<br>{Factory setting} | Setting value / Description / Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Device | Supervisor | Parameter<br>set |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|------------------|
| P173                           | Module status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |            |                  |
| 0 FFFF (hex)<br>{ 0000 }       | <b>Possible values:</b> Bit 0 = Bus status "Online / Not connected"         Bit 1 = Bus status "Online / Connected"         Bit 2 = Timeout (DeviceNet monitoring or time i         Bit 3 = Faulty DIP setting X1         Bit 4 = DeviceNet " BUS WARNING"         Bit 5 = DeviceNet " BUS OFF"         Bit 6 = System bus " BUS WARNING"         Bit 7 = System bus "BUS OFF" Bit 8 = Status F         Bit 9 = Status FI 1         Bit 10= Status FI 2         Bit 11= Status FI 2         Bit 12= Status FI 3         Bit 13= Status FI 4 |        |            |                  |
|                                | Status for FI x:Bit HighBit LowStatus00FI is offline01Unknown FI10FI is online11FI lost or switched off                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |            |                  |
| P174                           | Digital inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |                  |
| 0 15<br>{ 0 }                  | Instantaneous view of input level logic.<br><b>Possible values:</b><br>Bit 0= Input 1 (DIN1)<br>Bit 1= Input 2 (DIN2)<br>Bit 2= Input 3 (DIN3)<br>Bit 3= Input 4 (DIN4)                                                                                                                                                                                                                                                                                                                                                                     |        |            |                  |
| P175                           | Digital outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |            |                  |
| 0 3<br>{ 0 }                   | Instantaneous view of output level logic. Possible values:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |            |                  |
| (~)                            | Bit 1= Output 1 (DO1)<br>Bit 2= Output 2 (DO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |                  |

| Parameter<br>{Factory s        |                    | Setting value / Description / Note                                                                                                                                                                                                                                                         | Device                                                                                                                                                                               | Supervisor                                                                                 | Parameter<br>set |
|--------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|
| P176                           | [-01]<br><br>[-17] | Process data bus In                                                                                                                                                                                                                                                                        |                                                                                                                                                                                      |                                                                                            |                  |
| [-17]<br>-32768 32767<br>{ 0 } |                    | Bus data received from DeviceNet master<br>[-01] = Bus module outputs<br>[-02] = Control word FI 1<br>[-03] = Setpoint 1 for FI 1<br>[-04] = Setpoint 2 for FI 1<br>[-05] = Setpoint 3 for FI 1<br>[-06] = Control word FI 2<br>[-07] = Setpoint 1 for FI 2<br>[-08] = Setpoint 2 for FI 2 | <br><br><br><br>. [-09] = Setpoir<br>. [-10] = Control<br>. [-11] = Setpoir<br>. [-12] = Setpoir<br>. [-13] = Setpoir<br>. [-14] = Control<br>. [-15] = Setpoir<br>. [-16] = Setpoir | word FI 3<br>ht 1 for FI 3<br>ht 2 for FI 3<br>ht 3 for FI 3<br>word FI 4<br>ht 1 for FI 4 |                  |
|                                |                    |                                                                                                                                                                                                                                                                                            | . [-17] = Setpoir                                                                                                                                                                    |                                                                                            |                  |

| P177 [-01]<br><br>[-17] | Process data bus Out                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                                                                                                      |                                                                                                               |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| -32768 32767            | Bus data sent to DeviceNet master                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                      |                                                                                                               |  |
| {0}                     | <ul> <li> [-01] = Bus module inputs</li> <li> [-02] = Status word Fl 1</li> <li> [-03] = Actual value 1 for Fl 1</li> <li> [-04] = Actual value 2 for Fl 1</li> <li> [-05] = Actual value 3 for Fl 1</li> <li> [-06] = Status word Fl 2</li> <li> [-07] = Actual value 1 for Fl 2</li> <li> [-08] = Actual value 2 for Fl 2</li> <li> [-09] = Actual value 3 for Fl 2</li> </ul> | [·<br>[·<br>[·<br>[·<br>[· | -10] = Status v<br>-11] = Actual v<br>-12] = Actual v<br>-13] = Actual v<br>-14] = Status v<br>-15] = Actual v<br>-16] = Actual v<br>-17] = Actual v | ralue 1 for FI 3<br>ralue 2 for FI 3<br>ralue 3 for FI 3<br>word FI 4<br>ralue 1 for FI 4<br>ralue 2 for FI 4 |  |

Note X1 = This bit is active if the address of the bus module has been doubly assigned or the baud rate has not been set correctly.

# 5.2.4 Module information parameters specific to the bus (P180)

| Parameter<br>{Factory setting} | Setting value / Description / Note                                                                                                                                                                        | Device | Supervisor | Parameter<br>set |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|------------------|--|--|--|--|--|
| P180                           | DeviceNet address:                                                                                                                                                                                        |        |            |                  |  |  |  |  |  |
| 0 63<br>{ 0 }                  | Each module transmitting on the bus must be allocated a unique address. After the new setting of addresses, all the devices on this bus must be restarted by switching the power supply off and on again. |        |            |                  |  |  |  |  |  |
| P181                           | DeviceNet baud rate                                                                                                                                                                                       |        |            |                  |  |  |  |  |  |
| 0 2<br>{ 0 }                   | 3 different baud rate settings are available:<br>0 = 125 kBaud<br>1 = 250 kBaud<br>2 = 500 kBaud                                                                                                          |        |            |                  |  |  |  |  |  |

# 6 Error monitoring and error messages

### 6.1 Error monitoring

The majority of bus module and frequency inverter functions and operating data are continuously monitored and simultaneously compared with limiting values. If a deviation is detected, the bus module or inverter reacts with a warning or an error message.

For detailed information, please refer to the relevant main manual of the frequency inverter.

Errors cause the frequency inverters to switch off, in order to prevent a device fault.

The following options are available to reset a fault (acknowledge):

- 1. switching the mains off and on again,
- by means of a correspondingly programmed digital input (SK 200E: (P420) [-...], function {12} or SK 500E: (P420 ... P425), function {12}),
- 3. By switching of the "enable" on the frequency inverter (if <u>no</u> digital input is programmed for acknowledgement),
- 4. by bus acknowledgement or
- 5. By P506, the automatic error acknowledgement.

Visualisation of the inverter error codes is made via the frequency inverter (see relevant manual).

Errors which are attributable to bus operation are visualised via the bus module. The precise error message is displayed in parameter P170.

#### NOTE



The display of a bus error is shown in the operating display of the SimpleBox **SK CSX3H** by means of the error group number **E1000**. In order to obtain the precise error number, the module information parameter P170 must be selected. The current error is shown in Array [01] of this parameter; the last error is stored in Array [02].

The DeviceNet module monitors the following functions:

- Cyclic connection to the bus master via the DeviceNet watchdog function (parameterisation is carried out in the bus master)
- Cyclic connection to the bus master and valid control data via the bus module parameter (P151)

# 6.2 Error messages

## 6.2.1 Table of possible error messages (caused by the bus) in the frequency inverter

The following error messages concern bus-related messages which are indicated on the frequency inverter. A complete list of error messages for the frequency inverter (SK 200E) can be found in the relevant manual (BU0200).

| Display ir<br>SimpleBo |                           | Fault                                                                             | Cause                                                                                                                                                                                        |
|------------------------|---------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Group                  | Details in<br>P700 / P701 | Text in the ParameterBox                                                          | Remedy                                                                                                                                                                                       |
| E010                   | 10.2                      | External bus module<br>telegram timeout<br>(Timeout of DeviceNet Bus<br>Watchdog) | Telegram transfer is faulty.<br>Check external connection.<br>Check bus protocol program process.                                                                                            |
|                        |                           |                                                                                   | Check Bus master.                                                                                                                                                                            |
|                        | 10.3                      | Timeout via (P151)                                                                | Telegram transfer is faulty.<br>Check watchdog time (P151)<br>Check external connection.<br>Check bus protocol program process.<br>Check Bus master.<br>Control word is invalid (Bit 10 = 0) |
|                        | 10.9                      | Module not found                                                                  | The module entered in parameter (P120) is not available.                                                                                                                                     |

# 6.2.2 Table of possible error messages in the bus module

The following error messages concern bus-related messages, which are indicated on the DeviceNet module (SK CU4DEV or SK TU4DEV(-...)).

| Display<br>in the Sim    | npleBox | Fault                     | Cause                                        |
|--------------------------|---------|---------------------------|----------------------------------------------|
| Group Details in<br>P170 |         | Text in the ParameterBox  | Remedy                                       |
| E1000                    | 1000    | EEPROM error              | Module faulty                                |
|                          | 1010    | System bus 24V missing    | Check connections and supply cables          |
|                          |         |                           | Ensure 24V voltage supply                    |
|                          | 1020    | System bus timeout        | Check time set in parameter (P151).          |
|                          |         |                           | Telegram transfer is faulty.                 |
|                          |         |                           | Check external connection.                   |
|                          |         |                           | Check bus protocol program process.          |
|                          |         |                           | Check Bus master                             |
|                          | 1030    | System bus OFF            | Check connections and supply cables          |
|                          |         |                           | Ensure 24V voltage supply                    |
|                          |         |                           | Check Bus master                             |
|                          | 5210    | DeviceNet Bus OFF         |                                              |
|                          | 5211    | Address already allocated | Avoid double assignment of addresses         |
|                          |         |                           | Comply with address range 1 63               |
|                          |         |                           | Match master addressing to option addressing |
|                          | 5212    | Illegal baud rate         | Invalid setting on DIP switch                |
|                          | 5220    | DeviceNet Timeout         |                                              |

# 7 DeviceNet data transmission

# 7.1 Structure of reference data

This section describes the cyclic data traffic between the bus master and the frequency inverter.

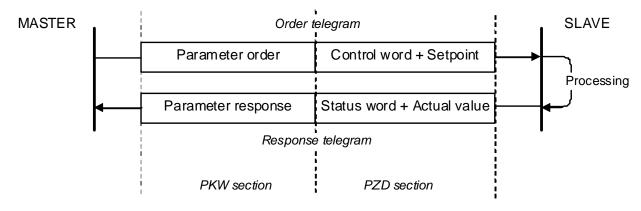
The reference data is divided into two sections:

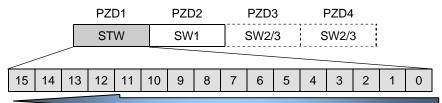
- PKW section (Parameter Code Value (parameterisation level))
- PZD section (Process data (process data level))

Parameter values can be read and written via the PKW section of the reference data. All tasks which are carried out via the PKW interface are essentially tasks for configuration, monitoring or diagnosis.

The PZD section serves to control the frequency inverter. The control word or status word as well as the setpoint and actual values are transferred in the process data.

Access always consists of an order and a response telegram. In the order telegram, the reference data is transferred to the slave. In the response telegram, the reference data is transferred from the slave to the master. The structure of both telegrams is identical.



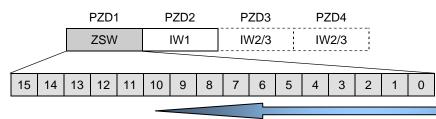


Fig.: Telegram traffic / structure of reference data area

Processing of the process data is carried out immediately in the FI (high priority), in order to ensure a rapid reaction to control commands or a change in status can be transmitted to the master without delay. On the other hand, the processing speed of the PKW data has a lower priority, so that processing may take considerably longer.

# 7.2 NORDAC profile

## 7.2.1 Control word (STW)

The control word (STW) is the first word transferred to the frequency inverter in the process data section in an order telegram.




#### Meaning of the individual bits:

| Bit | Value | Significance                  | Comments                                                                                                          |                                   |  |  |  |  |  |
|-----|-------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
| 0   | 0     | OFF 1                         | Return with the brake ramp, at f=0Hz voltage activation                                                           |                                   |  |  |  |  |  |
|     | 1     | ON                            | Standby                                                                                                           |                                   |  |  |  |  |  |
| 1   | 0     | OFF 2                         | Disable voltage; the inverter output voltage is switched off; the FI goes into switch-on disabled status.         |                                   |  |  |  |  |  |
|     | 1     | Operating condition           | OFF 2 is cancelled                                                                                                |                                   |  |  |  |  |  |
| 2   | 0     | OFF 3                         | Emergency stop with programmed emergenc<br>enable; the FI goes into switch-on disabled st                         |                                   |  |  |  |  |  |
|     | 1     | Operating condition           | OFF 3 is cancelled                                                                                                |                                   |  |  |  |  |  |
| 3   | 0     | Disable operation             | Disable voltage; the inverter output voltage is<br>standby status.                                                | switched off; the FI goes into    |  |  |  |  |  |
|     | 1     | Enable operation              | Output voltage enabled, run-up to present se                                                                      | tpoint.                           |  |  |  |  |  |
| 4   | 0     | Disable run-up encoder        | Run-up encoder is set to zero; at f = 0Hz no v operation enabled status.                                          | voltage enable; FI remains in     |  |  |  |  |  |
|     | 1     | Operating condition           | Run-up encoder is enabled                                                                                         |                                   |  |  |  |  |  |
| 5   | 0     | Stop run-up encoder           | Freezing of actual setpoint from run-up encoc                                                                     | der (hold frequency).             |  |  |  |  |  |
|     | 1     | Enable run-up encoder         | Enable setpoint on run-up encoder                                                                                 |                                   |  |  |  |  |  |
| 6   | 0     | Disable setpoint              | Selected setpoint is set to zero in the run-up                                                                    | encoder.                          |  |  |  |  |  |
|     | 1     | Enable setpoint               | Selected setpoint on run-up encoder is activa                                                                     | ited.                             |  |  |  |  |  |
| 7   | 0     | No acknowledgement            | With the switch from 0 to 1, errors which are no longer active are acknowledged.                                  |                                   |  |  |  |  |  |
|     | 1     | Acknowledge                   | Note: If a digital input is programmed to the function of the set permanently to 1 via the bus (other detection). |                                   |  |  |  |  |  |
| 8   | 0     |                               |                                                                                                                   |                                   |  |  |  |  |  |
|     | 1     | Bit 8 active                  | Bus bit 8 from the control word is set. (only fo<br>For further details of function, please refer to              |                                   |  |  |  |  |  |
| 9   | 0     |                               |                                                                                                                   |                                   |  |  |  |  |  |
|     | 1     | Bit 9 active                  | Bus bit 9 from the control word is set. (only for<br>For further details of function, please refer to             |                                   |  |  |  |  |  |
| 10  | 0     | PZD invalid                   | The transmitted process data is invalid.                                                                          |                                   |  |  |  |  |  |
|     | 1     | PZD valid                     | Valid process data is transferred from the ma                                                                     |                                   |  |  |  |  |  |
|     |       |                               | <b>Note:</b> If only setpoints are transferred via the transferred setpoint is valid.                             | bus, this bit must be set so that |  |  |  |  |  |
| 11  | 0     |                               |                                                                                                                   |                                   |  |  |  |  |  |
|     | 1     | Rotation right                | Rotation right (priority) is on.                                                                                  |                                   |  |  |  |  |  |
| 12  | 0     |                               |                                                                                                                   |                                   |  |  |  |  |  |
|     | 1     | Rotation left                 | Rotation left is on.                                                                                              |                                   |  |  |  |  |  |
| 13  | 0/1   |                               | Reserved                                                                                                          |                                   |  |  |  |  |  |
| 14  | 0/1   | Parameter set switch<br>Bit 0 | 00 = Parameter set 1                                                                                              | 10 = Parameter set 3              |  |  |  |  |  |
| 15  | 0/1   | Parameter set switch<br>Bit 1 | ch 01 = Parameter set 2 11 = Parameter set 4                                                                      |                                   |  |  |  |  |  |

# 7.2.2 Status word (ZSW)

The status word (ZSW) is the first word transferred to the frequency inverter in the process data section of a response telegram.



#### Meaning of the individual bits:

| Bit | Value | Significance                         | Comments                                                                                                 |                                         |  |  |  |  |
|-----|-------|--------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| 0   | 0     | Not on standby                       |                                                                                                          |                                         |  |  |  |  |
|     | 1     | Ready for switch-on                  | Initialisation complete, load relay on, output                                                           | voltage disabled                        |  |  |  |  |
| 1   | 0     | Not operational                      | Causes: No ON command, an error has occurs on disable status active.                                     | urred, OFF 2 or OFF 3 active, switch    |  |  |  |  |
|     | 1     | Standby                              | ON command active, no errors. The inverter<br>OPERATION command.                                         | can be started with the ENABLE          |  |  |  |  |
| 2   | 0     | Operation disabled                   |                                                                                                          |                                         |  |  |  |  |
|     | 1     | Operation enabled                    | Output voltage enabled, run-up to present se                                                             | etpoint.                                |  |  |  |  |
| 3   | 0     | No errors                            |                                                                                                          |                                         |  |  |  |  |
|     | 1     | Fault                                | Drive malfunctioning therefore out of order, in go to switch-on disabled status.                         | f acknowledgement is successful, wi     |  |  |  |  |
| 4   | 0     | OFF 2                                | OFF 2 disable voltage command active                                                                     |                                         |  |  |  |  |
|     | 1     | No OFF 2                             |                                                                                                          |                                         |  |  |  |  |
| 5   | 0     | OFF 3                                | OFF 3 rapid stop command active                                                                          |                                         |  |  |  |  |
|     | 1     | No OFF 3                             |                                                                                                          |                                         |  |  |  |  |
| 6   | 0     | No switch-on disable                 |                                                                                                          |                                         |  |  |  |  |
|     | 1     | Switch-on disabled                   | Goes to standby status through OUT 1 comr                                                                | mand                                    |  |  |  |  |
| 7   | 0     | No warning                           |                                                                                                          |                                         |  |  |  |  |
|     | 1     | Warning                              | Drive still in operation, no acknowledgement                                                             | necessary                               |  |  |  |  |
| 8   | 0     | Actual value not O.K.                | Actual value does not match the setpoint (wi reached)                                                    | th posicon: Setpoint position not       |  |  |  |  |
|     | 1     | Actual value O.K.                    | Actual value matches the setpoint (setpoint r                                                            | reached)                                |  |  |  |  |
|     |       |                                      | (with posicon: Setpoint position reached)                                                                |                                         |  |  |  |  |
| 9   | 0     | Local guidance                       | Local guidance active on device                                                                          |                                         |  |  |  |  |
|     | 1     | Guidance required                    | The master is called upon to take over the g                                                             | uidance.                                |  |  |  |  |
| 10  | 0     |                                      |                                                                                                          |                                         |  |  |  |  |
|     | 1     | Bit 10 active                        | Bus bit 10 from the status word is set. For fu to parameter P481.                                        | rther details of function, please refer |  |  |  |  |
| 11  | 0     |                                      |                                                                                                          |                                         |  |  |  |  |
|     | 1     | Rotation right                       | Inverter output voltage has right-hand rotatin                                                           | ng field                                |  |  |  |  |
| 12  | 0     |                                      |                                                                                                          |                                         |  |  |  |  |
|     | 1     | Rotation left                        | Inverter output voltage has left-hand rotating                                                           | field                                   |  |  |  |  |
| 13  | 0     |                                      |                                                                                                          |                                         |  |  |  |  |
|     | 1     | Bit 13 active                        | Bus bit 13 from the status word is set. For further details of function, please refer to parameter P481. |                                         |  |  |  |  |
| 14  | 0/1   | Actual active parameter set Bit 0    | 00 = Parameter set 1                                                                                     | 10 = Parameter set 3                    |  |  |  |  |
| 15  | 0/1   | Actual active<br>parameter set Bit 1 | 01 = Parameter set 2<br>11 = Parameter set 4                                                             |                                         |  |  |  |  |

### 7.2.3 Setpoint and actual values

#### 7.2.3.1 Setpoint 1 (SW1)

The function of the first setpoint is set in the parameter "Function bus setpoint 1" (SK 200E: (P546[01]) or SK 500E: (P546)) (see relevant frequency inverter manual).

In the order telegram, setpoint 1 follows immediately after the control word. Setpoint 1 is pre-set to the transfer of a setpoint frequency (16 bit value).

|    |    | PZD1 |    |     | PZD1 PZD2 |     |   |   | PZD3 PZD4 |   |   | ZD4 |   |   |   |
|----|----|------|----|-----|-----------|-----|---|---|-----------|---|---|-----|---|---|---|
|    |    | STW  |    | SW1 |           | SW2 |   |   | SW3       |   |   |     |   |   |   |
|    |    |      |    |     |           |     |   |   |           |   |   |     |   |   |   |
| 15 | 14 | 13   | 12 | 11  | 10        | 9   | 8 | 7 | 6         | 5 | 4 | 3   | 2 | 1 | 0 |

The setpoint is transferred as an integer in the range -32768 to 32767 (8000 hex to 7FFF hex), whereby 16384 (4000 hex) is exactly 100% and -16383 (C000 hex) corresponds to -100%. Due to this resolution, setpoints (depending on function) of up to  $\pm$  200% can be transferred.

A setpoint of 100% corresponds to the respective nominal value:

| Setting                                                                                                                                                              | 100% is equal to            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Off                                                                                                                                                                  |                             |
| Setpoint frequency, actual frequency PID, actual frequency PID limited, actual frequency PID monitored, frequency addition, frequency subtraction, maximum frequency | Maximum frequency           |
| Torque current limit                                                                                                                                                 | Torque current limit (P112) |
| Current limit                                                                                                                                                        | Inverter nominal current    |
| Servo mode torque                                                                                                                                                    | Nominal torque              |
| Lead torque                                                                                                                                                          | Lead torque (P214)          |

#### 7.2.3.2 Setpoints 2 and 3 (SW2/3)

If the PPO type 2 or 4 is used, in addition to setpoint 1, a second setpoint can be transferred in word PZD3 and a third setpoint in PZD4.

| PZD1 | PZD2 | PZD3 | PZD4 |
|------|------|------|------|
| STW  | SW1  | SW2  | SW3  |

The definition of these two setpoints corresponds to that of setpoint 1.

However, the transfer of a third (maximum 16 Bit) setpoint is only possible if the other two setpoints are also 16 Bit values.

If the transfer of a 32 bit setpoint is necessary (Example: setpoint position), this must be divided into two 16 bit values, i.e. into two PZDs (**position High** and **Low word**).

PZD1 PZD2 PZD3 PZD4

| STW | SW1 | SW2 |
|-----|-----|-----|

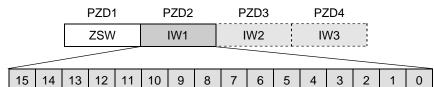
The definition in the frequency inverter can then, for example, be made via the parameters:

PZD3: "Bus function setpoint 2" (SK 200E: (P546[02]) or SK 500E (P547)) and

PZD4: "Bus function setpoint 3" (SK 200E: (P546[03]) or SK 500E (P548))

#### Example

If a position setpoint is to be transferred (Prerequisite: *posicon* inverter functionality) this can be performed either as a 16 bit or 32 bit value. The resolution is always 0.001 rotations/step.


A value range of +32767 (= 32.767 revolutions) to -32768 (= -32.768 revolutions) is possible as a **16 Bit** value. Here, exactly <u>one</u> PZD word is required in order to transfer the position.

The full position range of +/- 50000.000 revolutions is available as a **32 Bit** value. Here, exactly <u>two</u> PZD words are required in order to transfer the position.

#### 7.2.3.3 Actual value 1 (IW1)

The function of the actual value is set in the parameter "Function bus actual value 1" (SK 200E: (P543[01]) or SK 500E: (P543)) (see relevant frequency inverter manual).

In the order telegram, actual value 1 follows immediately after the control word. The actual value 1 is pre-set to the transfer of the current output frequency of the frequency inverter (16 bit value).



The actual value is transferred as an integer in the range -32768 to 32767 (8000 hex to 7FFF hex), whereby in the settings "actual frequency", "actual speed", "current" and "torque current", the values 16384 (4000 hex) exactly correspond to 100% and -16383 (C000 hex) correspond to exactly -100%. Due to this resolution, setpoints (depending on function) of up to  $\pm$  200% can be transferred.

#### 7.2.3.4 Actual values 2 and 3 (IW2/3)

If the PPO type 2 or 4 is used, in addition to actual value 1, a second actual value can be transferred in word PZD3 and a third actual value in PZD4.

| PZD1 | PZD2 | PZD3 | PZD4 |
|------|------|------|------|
| ZSW  | IW1  | IW2  | IW3  |

The definition of these two actual values corresponds to that of actual value 1.

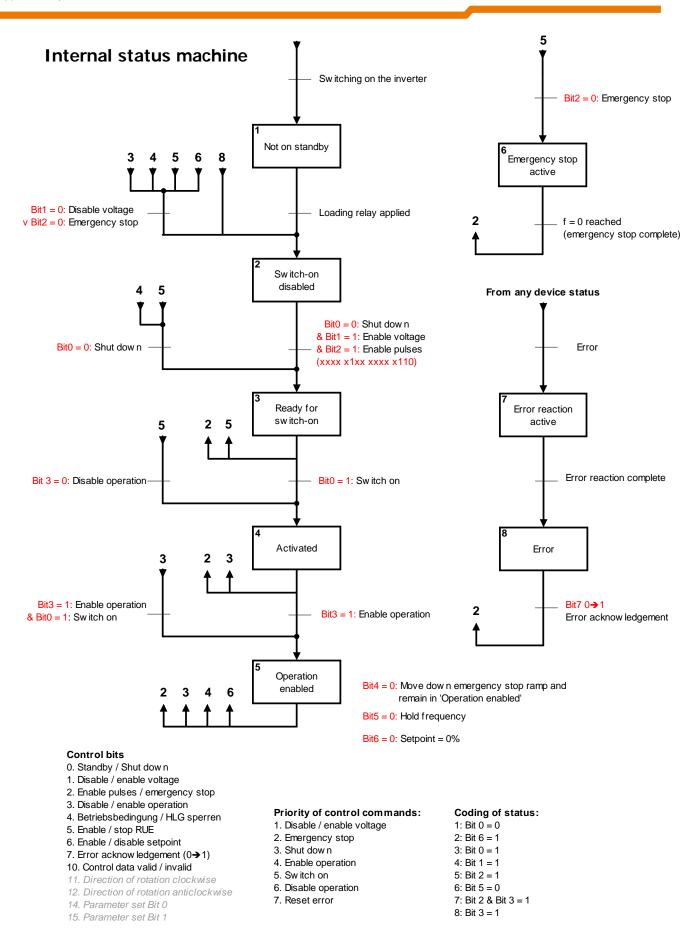
If the transfer of a 32 bit actual value is necessary (Example: actual position), this must be divided into two 16 bit values, i.e. into two PZDs (**position High** and **Low word**).

| PZD1 | PZD2 | PZD3 | PZD4 |
|------|------|------|------|
| ZSW  | IW1  | IV   | V2   |

The definition in the frequency inverter can then, for example, be made via the parameters:

PZD3: **"Bus function Actual value 2"** (SK 200E: (P543[02]) or SK 500E (P544)) and PZD4: **"Bus function Actual value 3"** (SK 200E: (P543[03]) or SK 500E (P545))

#### 7.2.4 The status machine


The frequency inverter passes through a status machine". The changes between various states are triggered by the respective control commands in the process data control word. The actual status is returned in the process data status word.

After switching on, the frequency inverter is in **Switch-on disabled** status. This status can only be ended by transmitting the "Shut down (Off 1)" command.

The answer to a master telegram normally does not yet contain a reaction to the control command. The controller has to check the answers from the slaves as to whether the control command has been carried out.

| Status                | Bit 6                | Bit 5             | Bit 4              | Bit 3 | Bit 2                | Bit 1   | Bit 0               |
|-----------------------|----------------------|-------------------|--------------------|-------|----------------------|---------|---------------------|
|                       | Switch-on<br>disable | Emergency<br>stop | Disable<br>voltage | Fault | Operation<br>enabled | Standby | Ready for switch-on |
| Not on standby        | 0                    | Х                 | Х                  | 0     | 0                    | 0       | 0                   |
| Switch-on disabled    | 1                    | Х                 | Х                  | 0     | 0                    | 0       | 0                   |
| Ready for switch-on   | 0                    | 1                 | 1                  | 0     | 0                    | 0       | 1                   |
| Activated             | 0                    | 1                 | 1                  | 0     | 0                    | 1       | 1                   |
| Operation enabled     | 0                    | 1                 | 1                  | 0     | 1                    | 1       | 1                   |
| Error                 | 0                    | Х                 | Х                  | 1     | 0                    | 0       | 0                   |
| Error active          | 0                    | Х                 | Х                  | 1     | 1                    | 1       | 1                   |
| Emergency stop active | 0                    | 0                 | 1                  | 0     | 1                    | 1       | 1                   |

The following bits indicate the status of the frequency inverter:



## 8 Additional information

#### 8.1 System bus

With NORDAC inverter technology, units or modules communicate via a dedicated system bus. With the launch of the SK 200E frequency inverter series and the associated components SK CU4-... and SK TU4-... functions and interfaces were implemented in this system bus, which enable the user to make appropriate adaptations.

A decisive advantage is provided by the fact that the system bus is no longer restricted to a single inverter and a directly connected module, but rather that up to 4 frequency inverters can jointly use a BUS interface (e.g.: DeviceNet). This increases the number of possible subscribers on a field bus system (by a factor of 4) with comparatively lower investment costs.

The system bus address of the bus modules (SK CU4-... and SK TU4-...) is set to "30". The system bus address of the up to 4 frequency inverters which can be connected are set by means of DIP switches (see manual BU0200) on the relevant frequency inverter, optionally between 32 / 34 / 36 and 38, whereby no address may be doubly assigned within a system bus system.

#### 8.2 Electronic data sheet (eds file)

All available objects are contained in the "Electronic data sheet" (eds file). This can be found on the enclosed EPD CD or under <u>www.nord.com</u>.

#### 8.3 Repairs

The device must be sent to the following address if it needs repairing:

# NORD Electronic DRIVESYSTEMS GmbH Tjüchkampstr. 37 26605 Aurich, Germany

For queries about repairs, please contact:

# Getriebebau NORD GmbH & Co. KG Tel.: 04532 / 401-515 Fax: 04532 / 401-555

If a frequency inverter or accessories are sent in for repair, no liability can be accepted for any added components, e.g. such as line cables, potentiometer, external displays, etc.!

Please remove all non-original parts from the frequency inverter.



If possible, the reason for returning the component/device should be stated. If necessary, at least one contact for queries should be stated.

This is important in order to keep repair times as short and efficient as possible.

On request you can obtain a suitable goods return voucher from Getriebebau NORD GmbH.

# 9 Index

Abbreviations used:

| BE         | Bus error (fault)                                             |
|------------|---------------------------------------------------------------|
| BG         | Module                                                        |
| BR         | Bus ready                                                     |
| BS         | BUS state (status)                                            |
| CU         | Customer Unit (customer interface - internal technology unit) |
| D, DI, DIN | Digital IN                                                    |
| DE         | DEVICE error (fault)                                          |
| DO, DOUT   | Digital OUT                                                   |
| DP         | Decentralised peripheral                                      |
| DS         | DEVICE state (status)                                         |
| DVN        | DeviceNet                                                     |
| EDS        | Electronic data sheet (eds file)                              |
| EMC        | Electromagnetic compatibility                                 |
| FI         | Frequency inverter                                            |
| GND        | Earth                                                         |
| HW         | Hardware                                                      |
| IND        | Index                                                         |
| I/O        | IN / OUT, input and output                                    |
| IW         | Actual value                                                  |
| I&M        | Identification & Maintenance Functions                        |
| MS         | Module status                                                 |
| NS         | Network Status                                                |
| Р          | Parameter which depends on a parameter set                    |
| PKE        | Parameter identifier                                          |
| PKW        | Parameter identifier Value                                    |
| PWE        | Parameter Value                                               |
| PZD        | Process data                                                  |
| STW        | Control word                                                  |
| SW         | Software / Setpoint                                           |
| Sys        | NORD system bus                                               |
| TU         | Technology Unit (external technology unit)                    |
| ZSW        | Status word                                                   |

# 10 Keyword index

# Α

| Accessories        | 9  |
|--------------------|----|
| Actual value7      | 0  |
| Adapter cable RJ12 | 34 |
| Addressing 2       | 26 |
| Assembly 1         | 3  |
|                    |    |

# В

| Basic parameters | 47 |
|------------------|----|
|------------------|----|

# С

| Class 4                                | 1 |
|----------------------------------------|---|
| Coated 11, 1                           | 2 |
| Commissioning 3                        | 5 |
| Communication monitoring 3             | 5 |
| Connection 1                           | 9 |
| Control connections for<br>SK CU4-DEV2 | 1 |
| Control terminal parameters 4          | 8 |
| Control word 6                         | 7 |

# D

| DeviceNet8,         | 36 |
|---------------------|----|
| DeviceNet-Adresse   | 27 |
| DeviceNet-Parameter | 56 |
| Diagnose 28,        | 33 |
| Digital inputs      | 48 |
| Dimensions          | 17 |
| DIP switch 26,      | 27 |
| Displays            | 28 |

# Ε

| EDS file73           |
|----------------------|
| Error messages 64    |
| Error monitoring63   |
| Extension modules 10 |

# F

Functional earthing ...... 20

## G

Gateway function......35

#### I

| Information parameters 54, 59 |
|-------------------------------|
| Installation 13               |
| IP protection class           |

# L

| LED2                  | 8, 30 |
|-----------------------|-------|
| Load factory setting  | 56    |
| Low voltage guideline | 3     |

## Ρ

| ParameterBox     | . 33 |
|------------------|------|
| Parameterisation | .47  |

## R

| Repairs7 | '3 |
|----------|----|
| RJ12     | 34 |

# S

| Safety information          | 3   |
|-----------------------------|-----|
| Setpoint                    | .69 |
| Signal statuses             | .30 |
| SK TU4-DEV                  | .23 |
| Standard- Parameter         | .56 |
| Standard version            | 9   |
| Status machine              | .71 |
| Status word                 | .68 |
| Structure of reference data | .66 |
| Supplementary parameter     | .50 |
| System bus                  | .73 |
| Systembus50,                | 51  |
|                             |     |

# Т

| TimeOut   | 35 |
|-----------|----|
| Type code | 11 |

# U

| USS Time Out65 |
|----------------|
|----------------|

# W

| Wall mounting18             | 3 |
|-----------------------------|---|
| Wall mounting kit14, 15, 17 | 7 |
| Watchdog38                  | 5 |

# 11 Representatives / Branches

| NORD subsidiaries worldwide:                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Australia<br>NORD Drivesystems<br>18 Stoney Way<br>3030 Derrimut Vic<br>Phone: +61 (0) 488 588 200<br>mark.alexander@nord.com                                                                                              | Brazil         NORD Motoredutores do Brasil Ltda.         Rua Dr. Moacyr Antonio de Morais, 700         Parque Santo Agostinho         Guarulhos – São Paulo         CEP 07140-285         Tel.: +55-11-6402 88 55         Fax: +55-11-6402 88 30         info@nord-br.com         India         NORD Drivesystems Pvt. Ltd. | Canada<br>NORD Gear Limited<br>41 West Drive<br>Brampton, Ontario L6T 4A1<br>Tel.: +1-905-796 36 06<br>Tel.: +1-800-668 43 55<br>Fax: +1-905-796 81 30<br>info@nord-ca.com                                                                            |
| NORD DRIVE SYSTEMS SA DE CV<br>Mexico Regional Office<br>Av. Lázaro Cárdenas 1007 Pte.<br>San Pedro Garza Garcia, N.L.<br>México, C.P. 66266<br>Tel.: +52-81-8220 91 65<br>Fax: +52-81-8220 90 44<br>HGonzalez@nord-mx.com | 282/ 2, 283/2, Plot No. 15<br>Mauje, Village Mann<br>Tal Mulshi, Adj. Hinjewadi Phase-II<br>Pune Maharashtra 411,057<br>Tel.: +91-20-398,012 00<br>Fax: +91-20-398 012 16<br>info@nord-in.com                                                                                                                                | PT NORD Indonesia<br>Jln. Raya Serpong KM7,<br>Kompleks Rumah Multi Guna Blok D-No. 1<br>Pakulonan, Serpong 15310 -Tangerang<br>West Java<br>Tel.: +62-21-53 12 22 22<br>Fax: +62-21-53 12 22 88<br>info@nord-id.com                                  |
| P.R. China<br>NORD (Beijing)<br>Power Transmission Co. Ltd.<br>No. 5, Tangjiacun,<br>Guangqudonglu, Chaoyangqu<br>CN -Beijing 100022<br>Tel.: +86-10-67 70 43 05<br>Fax: +86-10-67 70 43 30<br>nordac@nord-cn.com          |                                                                                                                                                                                                                                                                                                                              | P.R. China<br>NORD (Suzhou)<br>Power Transmission Co.Ltd.<br>No. 510 Changyang Street,<br>Suzhou Ind. Park<br>CN - Jiangsu 215021<br>Tel.: +86-512-85 18 02 77<br>Fax: +86-512-85 18 02 78<br>Kweng@nord-cn.com                                       |
| Singapore<br>NORD Gear Pte. Ltd.<br>33 Kian Teck Drive<br>SGP – Jurong, Singapore 628850<br>Tel.: +65-6265-91 18<br>Fax: +65-6265-68 41<br>info@nord-sg.com                                                                | United States / USA<br>NORD Gear Corporation<br>800 Nord Drive, P.O. Box 367<br>USA -Waunakee, WI 53597<br>Tel.: +1-888-314-66 67<br>Tel.: +1 -608 -849 73 00<br>Fax: +1-608-849 73 67<br>Fax: +1-800-373-NORD (6673)<br>info@nord-us.com                                                                                    | Vietnam<br>NORD Gear Pte. Ltd<br>Representative office<br>Unit 401, 4F, An Dinh Building,<br>18 Nam Quoc Cang Street<br>Pham Ngu Lao Ward<br>District 1, Ho Chi Minh City, Vietnam<br>Tel.: +84-8 925 7270<br>Fax: +84-8 925 7271<br>info@vn.nord.com |

| Austria                                                                    | Belgium                                                                                                       | Croatia                                                                       |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Getriebebau NORD GmbH<br>Deggendorfstr. 8                                  | NORD Aandrijvingen Belgie N.V.<br>Boutersem Dreef 24                                                          | NORD Pogoni d.o.o.<br>Obrtnicka 9                                             |
| A 4030 Linz                                                                | B - 2240 Zandhoven                                                                                            | HR - 48260 Krizevci                                                           |
| Tel.: +43-732-318 920<br>Fax: +43-732-318 920 85                           | Tel.: +32-3-4845 921<br>Fax: +32-3-4845 924                                                                   | Tel.: +385-48 711 900<br>Fax: +385-48 270 494                                 |
| info@nord-at.com                                                           | info@nord-be.com                                                                                              | info@nord-hr.com                                                              |
| Czech. Republic                                                            | Denmark                                                                                                       | Finland                                                                       |
| NORD Poháněcí Technika s.r.o<br>Palackého 359<br>CZ - 50003 Hradec Králové | NORD Gear Danmark A/S<br>Kliplev Erhvervspark 28 – Kliplev<br>DK - 6200 Aabenraa                              | NORD Gear Oy<br>Aunankorvenkatu 7<br>FI - 33840 Tampere                       |
| Tel.: +420-495 5803 -10 (-11)<br>Fax: +420-495 5803 -12                    | Tel.: +45 73 68 78 00<br>Fax: +45 73 68 78 10                                                                 | Tel.: +358-3-254 1800<br>Fax: +358-3-254 1820                                 |
| hzubr@nord-cz.com                                                          | info@nord-dk.com                                                                                              | info@nord-fi.com                                                              |
| France                                                                     | Great Britain                                                                                                 | Hungary                                                                       |
| NORD Réducteurs sarl.                                                      | NORD Gear Limited                                                                                             | NORD Hajtastechnika Kft.                                                      |
| 17 Avenue Georges Clémenceau                                               | 11, Barton Lane<br>Abingdon Science Park                                                                      | Törökkö u. 5-7                                                                |
| FR - 93421 Villepinte Cedex<br>Tel.: +33-1-49 63 01 89                     | GB - Abingdon, Oxfordshire OX 14 3NB                                                                          | H 1037 Budapest<br>Tel.: +36-1-437-0127                                       |
| Fax: +33-1-49 63 01 89<br>Fax: +33-1-49 63 08 11                           | Tel.: +44-1235-5344 04<br>Fax: +44-1235-5344 14                                                               | Fax: +36-1-250-5549                                                           |
| info@nord-fr.com                                                           | info@nord-uk.com                                                                                              | info@nord-hu.com                                                              |
| Italy                                                                      | Netherlands                                                                                                   | Norway                                                                        |
| NORD Motoriduttori s.r.l.                                                  | NORD Aandrijvingen Nederland B.V.                                                                             | Nord Gear Norge A/S                                                           |
| Via Newton 22                                                              | Voltstraat 12                                                                                                 | Hestehagen 5<br>NO - 1440 Drobak                                              |
| IT - 40017 San Giovanni in Persiceto (BO)<br>Tel.: +39-051-6870 711        | NL - 2181 HA Hillegom<br>Tel.: +31-2525-29544                                                                 |                                                                               |
| Fax: +39-051-6870 793                                                      | Fax: +31-2525-229544                                                                                          | Tel.: +47-64-905 580<br>Fax: +47-64-905 585                                   |
| info@nord-it.com                                                           | info@nord-nl.com                                                                                              | info@nord-no.com                                                              |
| Poland                                                                     | Portugal                                                                                                      | Russian Federation                                                            |
| NORD Napedy Sp. z.o.o.<br>UI. Grottgera 30<br>PL - 32-020 Wieliczka        | NORD Drivesystems PTP, Lda.<br>Zona Industial de Oiã, Lote nº 8<br>PT - 3770-059 Oiã Aveiro                   | OOO NORD PRIVODY<br>UI. A. Nevsky 9<br>RU - 191167 St.Petersburg              |
| Tel.: +48 -12 -288 99 00                                                   | Tel.: +351 234 727 090                                                                                        | Tel.: +7-812-327 0192                                                         |
| Fax: +48-12-288 99 11                                                      | Fax: +351 234 727 099                                                                                         | Fax: +7-812-327 0192                                                          |
| biuro@nord-pl.com                                                          | info@pt.nord.com                                                                                              | info@nord-ru.com                                                              |
| Slovakia                                                                   | Spain                                                                                                         | Sweden                                                                        |
| NORD Pohony, s.r.o<br>Stromová 13<br>SK - 83101 Bratislava                 | NORD Motorreductores<br>Ctra. de Sabadell a Prats de Llucanès<br>Aptdo. de Correos 166<br>ES - 08200 Sabadell | NORD Drivsystem AB<br>Ryttargatan 277 / Box 2097<br>SE - 19402 Upplands Väsby |
| Tel.: +421-2-54791317<br>Fax: +421-2-54791402                              | Tel.: +34-93-7235322<br>Fax: +34-93-7233147                                                                   | Tel.: +46-8-594 114 00<br>Fax: +46-8-594 114 14                               |
| info@nord-sk.com                                                           | info@nord-es.com                                                                                              | info@nord-se.com                                                              |
| Curite and an el                                                           | Turkey                                                                                                        | Ukraine                                                                       |
| Switzerland                                                                | NORD Drivesystems Güç Aktarma<br>Sistemleri San. Tic. Ltd. Þti.                                               | GETRIEBEBAU NORD GmbH                                                         |
| Getriebebau NORD AG<br>Bächigenstr. 18                                     | Tuzla Mermerciler San. Bölg.                                                                                  | Repräsentanz                                                                  |
| CH - 9212 Arnegg                                                           | 1.Sok. No:6                                                                                                   | Vasilkovskaja, 1 office 306<br>03040 KIEW                                     |
| Tel.: +41-71-388 99 11                                                     | TR - 34959 Tuzla – İST                                                                                        | Tel.: +380-44-537 0615                                                        |
| Fax: +41-71-388 99 15                                                      | Tel.: +90 -216 -593 32 00<br>Fax: +90-216-593 33 68                                                           | Fax: +380-44-537 0615                                                         |
| info@nord-ch.com                                                           |                                                                                                               | 1                                                                             |

# **NORD offices in Germany**



#### North branch

Getriebebau NORD GmbH & Co. KG Rudolf-Diesel-Str. 1 · 22941 Bargteheide

Tel.: 04532 / 401 - 0 Fax: 04532 / 401 - 253

NL-Nord@nord-de.com

#### Sales office Bremen

#### Getriebebau NORD GmbH & Co. KG

Stührener Weg 27 · 27211 Bassum

Tel.: 04249 / 9616 - 0 Fax: 04249 / 9616 - 76

#### NL-Nord@nord-de.com

#### **Representatives:**

Hans-Hermann Wohlers Handelsgesellschaft mbH

Ellerbuscher Str. 179 · 32584 Löhne

Tel.: +49 5732 / 40 72 Fax: +49 5732 / 123 18

NL-Nord@nord-de.com

#### West branch

#### Getriebebau NORD GmbH & Co. KG

Großenbaumer Weg 10 · 40472 Düsseldorf

Tel.: +49 211 / 99 555 - 0 Fax: +49 211 / 99 555 -45

NL-Duesseldorf@nord-de.com

#### Sales Office Butzbach

Getriebebau NORD GmbH & Co. KG

Marie-Curie-Str. 2 · 35510 Butzbach

Tel.: +49 6033 / 9623 - 0 Fax: +49 6033 / 9623 - 30

NL-Frankfurt@nord-de.com

#### Getriebebau NORD GmbH & Co. KG

Rudolf- Diesel- Str. 1 · 22941 Bargteheide

Tel.: 04532 / 401 - 0 Fax: 04532 / 401 - 253 info@nord-de.com www.nord.com



#### South branch

**Getriebebau NORD GmbH & Co. KG** Katharinenstr. 2-6 · 70794 Filderstadt-Sielmingen

Tel.: +49 7158 / 95608 - 0 Fax: +49 7158 / 95608 - 20

NL-Stuttgart@nord-de.com

#### Sales Office Nuremberg

Getriebebau NORD GmbH & Co. KG

Schillerstr. 3 · 90547 Stein

Tel.: +49 911 / 68 93 78 - 0 Fax: +49 911 / 67 24 71

NL-Nuernberg@nord-de.com

#### East branch

#### Getriebebau NORD GmbH & Co. KG

Leipzigerstr. 58 · 09113 Chemnitz

Tel.: +49 371 / 33 407 - 0 Fax: +49 371 / 33 407 - 20

NL-Chemnitz@nord-de.com

#### Sales Office Berlin

#### Getriebebau NORD GmbH & Co. KG

Heinrich- Mann- Str. 8 · 15566 Schöneiche

Tel.: +49 371 / 639 79 - 0 Fax: +49 371 / 639 79 - 414

NL-Chemnitz@nord-de.com

Mat. Nr. 607 2802 / 3709